acidic medium
Recently Published Documents


TOTAL DOCUMENTS

1537
(FIVE YEARS 367)

H-INDEX

68
(FIVE YEARS 13)

2022 ◽  
Vol 17 (1) ◽  
Author(s):  
Mina Razavi ◽  
M. Sookhakian ◽  
Boon Tong Goh ◽  
Hadariah Bahron ◽  
Eyas Mahmoud ◽  
...  

AbstractElectrochemical hydrogen evolution reaction (HER) refers to the process of generating hydrogen by splitting water molecules with applied external voltage on the active catalysts. HER reaction in the acidic medium can be studied by different mechanisms such as Volmer reaction (adsorption), Heyrovsky reaction (electrochemical desorption) or Tafel reaction (recombination). In this paper, facile hydrothermal methods are utilized to synthesis a high-performance metal-inorganic composite electrocatalyst, consisting of platinum nanoparticles (Pt) and molybdenum disulfide nanosheets (MoS2) with different platinum loading. The as-synthesized composite is further used as an electrocatalyst for HER. The as-synthesized Pt/Mo-90-modified glassy carbon electrode shows the best electrocatalytic performance than pure MoS2 nanosheets. It exhibits Pt-like performance with the lowest Tafel slope of 41 mV dec−1 and superior electrocatalytic stability in an acidic medium. According to this, the HER mechanism is related to the Volmer-Heyrovsky mechanism, where hydrogen adsorption and desorption occur in the two-step process. According to electrochemical impedance spectroscopy analysis, the presence of Pt nanoparticles enhanced the HER performance of the MoS2 nanosheets because of the increased number of charge carriers transport.


Author(s):  
Taisia I. Akimova ◽  
Olga A. Soldatkina ◽  
Andrey V. Gerasimenko ◽  
Vyacheslav G. Savchenko ◽  
Alevtina A. Kapustina

Author(s):  
Lingyan Jing ◽  
Qiang Tian ◽  
Panan Su ◽  
Haitao Li ◽  
Yao Zheng ◽  
...  

Electrochemical two-electron oxygen reduction reaction (2e− ORR) to produce hydrogen peroxide (H2O2) enables promising electro-Fenton process for on-site and on-demand environmental remediation. However, there is still lack of low-cost electrocatalysts...


2022 ◽  
pp. 335-355
Author(s):  
Mohamed Rbaa ◽  
Younes El Kacimi ◽  
Brahim Lakhrissi ◽  
Abdelkader Zarrouk

Sign in / Sign up

Export Citation Format

Share Document