scholarly journals Visual enhancement of microcalcifications and masses in digital mammograms using modified multifractal analysis

2015 ◽  
Vol 30 (1) ◽  
pp. 61-69 ◽  
Author(s):  
Tomislav Stojic

Microcalcifications and masses, as breast tissue anomalies (deviations from observed background regularity), may be viewed as statistically rare occurrences in a mammogram image. After recognizing their principal common features - bright image parts not belonging to the surrounding tissue, with significant local contrast just around the edges - several modifications to multifractal image analysis have been introduced. Starting from a mammogram image, the proposed method creates corresponding multifractal images. Additional post-processing, based on mathematical morphology, refines the procedure by selecting and outlining only regions with possible microcalcifications and masses. The proposed method was tested through referent mammograms from the MiniMIAS database. In all cases involving the said database, the method has successfully enhanced declared anomalies: microcalcifications and masses. The results obtained have shown that the described procedure may provide visual assistance to radiologists in clinical mammogram examinations or be used as a preprocessing step for further mammogram processing, such as segmentation, classification, and automatic detection of suspected bright breast tissue lesions.

2013 ◽  
Vol 25 (03) ◽  
pp. 1350029 ◽  
Author(s):  
Baljit Singh Khehra ◽  
Amar Partap Singh Pharwaha

Mammography is the most reliable, effective, low cost and highly sensitive method for early detection of breast cancer. Mammogram analysis usually refers to the processing of mammograms with the goal of finding abnormality presented in the mammogram. Mammogram enhancement is one of the most critical tasks in automatic mammogram image analysis. Main purpose of mammogram enhancement is to enhance the contrast of details and subtle features while suppressing the background heavily. In this paper, a hybrid approach is proposed to enhance the contrast of microcalcifications while suppressing the background heavily, using fuzzy logic and mathematical morphology. First, mammogram is fuzzified using Gaussian fuzzy membership function whose bandwidth is computed using Kapur measure of entropy. After this, mathematical morphology is applied on fuzzified mammogram. Mathematical morphology provides tools for the extraction of microcalcifications even if the microcalcifications are located on a nonuniform background. Main advantage of Kapur measure of entropy over Shannon entropy is that Kapur measure of entropy has α and β parameters that can be used as adjustable values. These parameters can play an important role as tuning parameters in the image processing chain for the same class of images. Experiments have been conducted on images of mini-Mammogram Image Analysis Society (MIAS) database (UK). Experiment results of the proposed approach are compared with histogram equalization (HE), contrast limited adaptive histogram equalization (CLAHE) and fuzzy histogram hyperbolization (FHH) which are well-established image enhancement techniques. In order to validate the results, several different kinds of standard test images (fatty, fatty-glandular and dense-glandular) of mini-MIAS database are considered. Objective image quality assessment parameters: Target-to-background contrast enhancement measurement based on standard deviation (TBCSD), target-to-background contrast enhancement measurement based on entropy (TBCE), contrast improvement index (CII), peak signal-to-noise ratio (PSNR) and average signal-to-noise ratio (ASNR) are used to evaluate the performance of proposed approach. The experimental results show that the proposed approach performs well. This study can be a part of developing a computer-aided diagnosis (CAD) system for early detection of breast cancer.


2014 ◽  
Vol 29 (2) ◽  
pp. 108-115
Author(s):  
Tomislav Stojic

A fast and simple method for the visual enhancement of small bright details in digital mam- mograms based on mathematical morphology is proposed. By a proper choice of the shape and size of the structuring element, an algorithm for a particular processing task - in this case, for the visual enhancement of microcalcifications in digital mammograms - was designed. The efficiency of the proposed algorithm was tested on publicly available mammograms from the mammographic image analysis society database. In all tested cases (23 mammograms), the proposed method successfully segmented and enhanced the existing microcalcifications, in- dependently verified by medical experts. The proposed procedure may be used both as a visual aid in clinical mammogram analysis or as a preprocessing step for further processing, such as segmentation, classification and detection of microcalcifications. Moreover, the algorithm is very fast and robust, thus applicable to real-time mammogram processing.


2021 ◽  
Vol 193 (2) ◽  
Author(s):  
Jens Oldeland ◽  
Rasmus Revermann ◽  
Jona Luther-Mosebach ◽  
Tillmann Buttschardt ◽  
Jan R. K. Lehmann

AbstractPlant species that negatively affect their environment by encroachment require constant management and monitoring through field surveys. Drones have been suggested to support field surveyors allowing more accurate mapping with just-in-time aerial imagery. Furthermore, object-based image analysis tools could increase the accuracy of species maps. However, only few studies compare species distribution maps resulting from traditional field surveys and object-based image analysis using drone imagery. We acquired drone imagery for a saltmarsh area (18 ha) on the Hallig Nordstrandischmoor (Germany) with patches of Elymus athericus, a tall grass which encroaches higher parts of saltmarshes. A field survey was conducted afterwards using the drone orthoimagery as a baseline. We used object-based image analysis (OBIA) to segment CIR imagery into polygons which were classified into eight land cover classes. Finally, we compared polygons of the field-based and OBIA-based maps visually and for location, area, and overlap before and after post-processing. OBIA-based classification yielded good results (kappa = 0.937) and agreed in general with the field-based maps (field = 6.29 ha, drone = 6.22 ha with E. athericus dominance). Post-processing revealed 0.31 ha of misclassified polygons, which were often related to water runnels or shadows, leaving 5.91 ha of E. athericus cover. Overlap of both polygon maps was only 70% resulting from many small patches identified where E. athericus was absent. In sum, drones can greatly support field surveys in monitoring of plant species by allowing for accurate species maps and just-in-time captured very-high-resolution imagery.


Biometrics ◽  
1983 ◽  
Vol 39 (2) ◽  
pp. 536 ◽  
Author(s):  
P. J. Diggle ◽  
J. Serra

Sign in / Sign up

Export Citation Format

Share Document