scholarly journals Weighted generalization of some inequalities for double integrals

2021 ◽  
Vol 110 (124) ◽  
pp. 71-79
Author(s):  
Mehmet Sarikaya ◽  
Hüseyin Budak

We give some weighted double integral inequalities of Hermite-Hadamard type for co-ordinated convex functions in a rectangle from R2. The inequalities obtained provide generalizations of some result given in earlier works.

2019 ◽  
Vol 2 (2) ◽  
pp. 11-18
Author(s):  
B.O. Fagbemigun ◽  
A.A. Mogbademu ◽  
J.O. Olaleru

The concept of Φh-convexity is extended for functions defined on closed Φh-convex subsets of linear spaces. Consequently, some double integral inequalities of Hermite-Hadamard type defined on time-scaled linear spaces are established for Φh-convex functions.


Analysis ◽  
2017 ◽  
Vol 37 (1) ◽  
Author(s):  
Sever S. Dragomir

AbstractSome double integral inequalities of Hermite–Hadamard type for


Filomat ◽  
2017 ◽  
Vol 31 (4) ◽  
pp. 1009-1016 ◽  
Author(s):  
Ahmet Akdemir ◽  
Özdemir Emin ◽  
Ardıç Avcı ◽  
Abdullatif Yalçın

In this paper, firstly we prove an integral identity that one can derive several new equalities for special selections of n from this identity: Secondly, we established more general integral inequalities for functions whose second derivatives of absolute values are GA-convex functions based on this equality.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Yi-Xia Li ◽  
Muhammad Aamir Ali ◽  
Hüseyin Budak ◽  
Mujahid Abbas ◽  
Yu-Ming Chu

AbstractIn this paper, we offer a new quantum integral identity, the result is then used to obtain some new estimates of Hermite–Hadamard inequalities for quantum integrals. The results presented in this paper are generalizations of the comparable results in the literature on Hermite–Hadamard inequalities. Several inequalities, such as the midpoint-like integral inequality, the Simpson-like integral inequality, the averaged midpoint–trapezoid-like integral inequality, and the trapezoid-like integral inequality, are obtained as special cases of our main results.


2020 ◽  
Vol 26 (1) ◽  
pp. 67-77 ◽  
Author(s):  
Silvestru Sever Dragomir

AbstractIn this paper, by the use of the divergence theorem, we establish some integral inequalities of Hermite–Hadamard type for convex functions of several variables defined on closed and bounded convex bodies in the Euclidean space {\mathbb{R}^{n}} for any {n\geq 2}.


Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1753
Author(s):  
Saima Rashid ◽  
Aasma Khalid ◽  
Omar Bazighifan ◽  
Georgia Irina Oros

Integral inequalities for ℘-convex functions are established by using a generalised fractional integral operator based on Raina’s function. Hermite–Hadamard type inequality is presented for ℘-convex functions via generalised fractional integral operator. A novel parameterized auxiliary identity involving generalised fractional integral is proposed for differentiable mappings. By using auxiliary identity, we derive several Ostrowski type inequalities for functions whose absolute values are ℘-convex mappings. It is presented that the obtained outcomes exhibit classical convex and harmonically convex functions which have been verified using Riemann–Liouville fractional integral. Several generalisations and special cases are carried out to verify the robustness and efficiency of the suggested scheme in matrices and Fox–Wright generalised hypergeometric functions.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Pshtiwan Othman Mohammed ◽  
Thabet Abdeljawad ◽  
Dumitru Baleanu ◽  
Artion Kashuri ◽  
Faraidun Hamasalh ◽  
...  

AbstractA specific type of convex functions is discussed. By examining this, we investigate new Hermite–Hadamard type integral inequalities for the Riemann–Liouville fractional operators involving the generalized incomplete gamma functions. Finally, we expose some examples of special functions to support the usefulness and effectiveness of our results.


Sign in / Sign up

Export Citation Format

Share Document