scholarly journals Estimation of reliability of a interleaving PFC boost converter

2010 ◽  
Vol 7 (2) ◽  
pp. 205-216 ◽  
Author(s):  
Amer Gulam ◽  
Srinivasa Rao

Reliability plays an important role in power supplies. For other electronic equipment, a certain failure mode, at least for a part of the total system, can often be employed without serious (critical) effects. However, for power supply no such condition can be accepted, since very high demands on its reliability must be achieved. At higher power levels, the continuous conduction mode (CCM) boost converter is preferred topology for implementation a front end with PFC. As a result, significant efforts have been made to improve the performance of high boost converter. This paper is one of the efforts for improving the performance of the converter from the reliability point of view. In this paper, interleaving boost power factor correction converter is simulated with single switch in continuous conduction mode (CCM), discontinuous conduction mode (DCM) and critical conduction mode (CRM) under different output power ratings. Results of the converter are explored from reliability point of view.

2018 ◽  
Vol 28 (05) ◽  
pp. 1850061 ◽  
Author(s):  
Zirui Jia ◽  
Chongxin Liu

By using fractional-order calculus theory and considering the condition that capacitor and inductor are naturally fractional, we construct the fractional mathematical model of the magnetic coupled boost converter with tapped-inductor in the operation of continuous conduction mode (CCM). The fractional state average model of the magnetic coupled boost converter in CCM operation is built by exploiting state average modeling method. In these models, the effects of coupling factor, which is viewed as one generally, are directly pointed out. The DC component, the AC component, the transfer functions and the requirements of the magnetic coupled boost converter in CCM operation are obtained and investigated on the basis of the state averaged model as well as its fractional mathematical model. Using the modified Oustaloup’s method for filter approximation algorithm, the derived models are simulated and compared using Matlab/Simulink. In order to further verify the fractional model, circuit simulation is implemented. Furthermore, the differences between the fractional-order mathematical models and the corresponding integer-order mathematical models are researched. Results of the model and circuit simulations validate the effectiveness of theoretical analysis.


2014 ◽  
Vol 79 (2) ◽  
pp. 355-369 ◽  
Author(s):  
Yuh-Shyan Hwang ◽  
An Liu ◽  
Chia-Hsuan Chen ◽  
Yi-Tsen Ku ◽  
Jiann-Jong Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document