scholarly journals A study of ceramic-lined composite steel pipes prepared by SHS centrifugal-thermite process

2016 ◽  
Vol 48 (1) ◽  
pp. 81-86 ◽  
Author(s):  
Yuxin Li ◽  
Letao Jiang ◽  
Qing Lu ◽  
Peikang Bai ◽  
Bin Liu ◽  
...  

Al2O3 ceramic-lined steel pipe was produced by self-propagating high-temperature synthesis centrifugal thermite process (SHS C-T process) from Fe2O3 and Al as the raw materials. The composition, phase separation and microstructures were investigated. The result showed the ceramic lined pipe is composed of the three main layers of various compositions, which were subsequently determined to be Fe layer, the transition layer and the ceramic layer. Fe layer is composed of austenite and ferrite, the transition layer consisted of Al2O3 ceramic and Fe, the ceramic layer consisted of the dendritic-shaped Al2O3 and the spinel-shaped structured FeAl2O4.

2013 ◽  
Vol 659 ◽  
pp. 10-14
Author(s):  
Yu Zhu ◽  
Feng Huang ◽  
Yu Xi Ge ◽  
Hong Jun Ni

In order to improve the density and mechanical properties of ceramic-lined composite steel pipes produced by Centrifugal Self-propagating High-temperature Synthesis. Composite steel pipes were prepared by the method of centrifugal-SHS on the basic of Al-Fe2O3 system. With the condition of adding 6% SiO2 and 4% Na2B4O7, the effect of different amount of nano-TiO2 on the density and the mechanical properties of composite steel pipes was studied. By means of SEM analysis, XRD and mechanical tests, the results show that the ceramic layer consists of main crystal phase of α-Al2O3, with small amount phases of FeAl2O4, Al2SiO5 and B2O3. The surface of ceramic layer is smooth, without obvious crack and with good density. The shearing strength of the ceramic layer and the crushing strength of the composite pipe were 13.5 MPa under 8% (in mass) nano-TiO2 and 525Mpa. The density of ceramic layer is up to 94.2% under 8% (in mass) nano-TiO2.


2014 ◽  
Vol 633-634 ◽  
pp. 364-367
Author(s):  
Jian Ping Wang ◽  
Yu Zhang ◽  
Hong Jun Ni ◽  
Yu Zhu

This manuscript was used to test feasibility that the Al2O3 ceramic composite steel plate was fabricated by Self-propagating High-temperature Synthesis (SHS).The Al2O3 ceramic coatings were prepared on the steel plates.The ceramic coatings had been subsequently characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) attachment. The results showed that the ceramic coatings could be divided into three layers called Al2O3 ceramic layer, Fe/Al2O3 blending layer and iron layer from the roof to the bottom. Al2O3 ceramic layer had many porosities and low density. The tissue structure of Fe/Al2O3 blending layer was compact and had no porosities.


2015 ◽  
Vol 47 (1) ◽  
pp. 58-66 ◽  
Author(s):  
Farit Kh. Urakaev ◽  
Kenzhebek A. Akmalaev ◽  
Eljan S. Orynbekov ◽  
Beykut D. Balgysheva ◽  
Dinar N. Zharlykasimova

2012 ◽  
Vol 488-489 ◽  
pp. 468-472 ◽  
Author(s):  
Pajaree Kerdkool ◽  
Sutham Niyomwas

Steel pipe lined Fe-Al intermetallic-TiB2-Al2O3composite were prepared by centrifugal-self-propagating high temperature synthesis (centrifugal-SHS) process from FeTiO3, B2O3, Fe2O3, Al and CaF2as raw materials. The standard Gibbs energy minimization method was used to calculate the equilibrium compositions of the reacting species. The effect of adding CaF2to the precursors on the result product were investigated. The phase separation between less porosity Fe-Al intermetallics-TiB2with Al2O3layer were affected greatly by adding CaF2. The phase compositions and morphology were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM) couple with energy dispersive X-ray (EDX), respectively.


Author(s):  
R. Yu. Popov ◽  
E. O. Bohdan ◽  
E. M. Dyatlova ◽  
M. V. Komar

This article shows the possibility of using the method of self-propagating high-temperature synthesis to obtain protective and hardening coatings for the lining of various thermal installations. The development of compositions of ceramic masses for the production of SHS coatings was carried out on the basis of aluminum powder, clay raw materials, exhausting and fluxing components as well as mineralizing additives. The prepared suspension including pre-prepared and thoroughly mixed raw materials was applied with a brush or a spray gun onto the previously cleaned and moistened surface of an aluminosilicate refractory. The firing of the coating was carried out in accordance with the mode of removing the thermal unit at the operating temperature. The temperature of the initiation of the SHS process, previously established using differential thermal analysis, was in the range of 570–720 °C and depended on the chemical composition of the charge. It has been established that the presence of crystalline phases of silica, corundum, hematite and a number of solid solutions (mainly calcium and sodium aluminosilicates) in the coating structure provides the necessary combination of the thermomechanical and thermophysical characteristics of the coatings. On the basis of the conducted research, the expediency of applying the technology of self-propagating high-temperature synthesis for the production of protective and hardening coatings on the lining of thermal units is demonstrated, which is confirmed by industrial tests in the conditions of the Minsk Ceramic Factory OJSC «Keramin».


2012 ◽  
Vol 626 ◽  
pp. 143-146 ◽  
Author(s):  
Tawat Chanadee ◽  
Sutham Niyomwas ◽  
Jessada Wannasin

Tungsten silicides intermetallic compound (WSi2) was synthesized in-situ by self-propagating high temperature synthesis-casting of WO3-Si-Al system in Ar gas environment. It is proposed that the extent of phase separation between oxide ceramic and intermetallic compound depends on the reaction temperature that made a lower viscosity and longer lifetime of the melted. The effects of inert gas pressure on densification of the intemetallic product were investigated.


2016 ◽  
Vol 35 (4) ◽  
pp. 369-374 ◽  
Author(s):  
Baoyan Liang ◽  
Zhiwei Wang ◽  
Yanli Zhang

AbstractA mixture of Ti, Al, graphite and c-BN powders was used as raw material to fabricate Ti2AlC matrix-bonded c-BN composite using the self-propagating high-temperature synthesis (SHS) method. The effect of c-BN size and content on the fabrication of the composites was investigated. The results show that Ti2AlC matrix-bonded c-BN composites can be obtained by SHS. c-BN content and size evidently affected the phase composition and microstructure characteristic of the composites. At 10–30% c-BN (120/140 mesh) content, the product phases were Ti2AlC, Ti3AlC2, Al3Ti, TiN, TiC, AlN, graphite and TiB2. A dense transition layer with a thickness of about 10 µm showed the interface between c-BN and the matrix. However, Al peaks appeared, and the titanium aluminium carbide peak became weak in the samples containing 40% and 50% c-BN. c-BN was unequally enwrapped by one coating with a thickness of about 2 µm. The main product phases of the samples were Ti2AlC, Ti3AlC2, Al3Ti, TiN, TiC, AlN, graphite and TiB2 in the products with different c-BN sizes. The addition of coarse c-BN particles (80/100, 120/140 and 170/200 mesh) yielded a transition layer with a thickness of approximately 10 µm on the interface and Ti2AlC main phase matrix. The finer the particle size, the greater the reaction activity. When c-BN was finer (20 μm), c-BN more easily reacted with Ti and Al to form TiN, AlN and TiB2. The synthesis of Ti2AlC was obviously inhibited.


Sign in / Sign up

Export Citation Format

Share Document