scholarly journals Heat transfer in natural convection flow of nanofluid along a vertical wavy plate with variable heat flux

2019 ◽  
Vol 23 (1) ◽  
pp. 179-190 ◽  
Author(s):  
Irfan Mustafa ◽  
Tariq Javed

The present analysis is concerned to examine the enhancement of heat transfer in natural convection flow of nanofluid through a vertical wavy plate assumed at variable heat flux. The rate of heat transfer in nanofluid flow as compared to pure water can be increased due to increase the density of nanofluid which depends on the density and concentration of nanoparticles. For this analysis, Tiwari and Das model is used by considering two nanoparticles i. e. Al2O3 and Cu are suspended in a base fluid (water). A very efficient implicit finite difference technique converges quadratically is applied on the concerning PDE for numerical solution. The effects of pertinent parameters namely, volume fraction parameter of nanoparticle, wavy surface amplitude, Prandtl number and exponent of variable heat flux on streamlines, isothermal lines, local skin friction coefficient and local Nusselt number are shown through graphs. In this analysis, a maximum heat transfer rate is noted in Cu-water nanofluid through a vertical wavy surface as compared to Al2O3-water and pure water.

2019 ◽  
Vol 23 (6 Part A) ◽  
pp. 3391-3400
Author(s):  
Abuzar Ghaffari ◽  
Tariq Javed ◽  
Irfan Mustafa ◽  
Fotini Labropulu

In this study, natural convection flow along a vertical wavy surface has been investigated with variable heat flux. The governing equations are transformed into dimensionless PDE by using the non-dimensional variables and then solved numerically by using an implicit finite difference scheme known as Keller Box method. The effects of the parameters amplitude of the wavy surface, ?, exponent of the variable heat flux, m, and Prandtl number on the local skin friction coefficient and local Nusselt number are shown graphically. It is found that for the negative value of exponent of the variable heat flux, m, the local skin friction coefficient increases and Nusselt number decreases but the opposite behavior is observed for the positive values of m. The comparison of limiting case with the previous study is shown through table and it is found that the solution obtained is in excellent agreement with the previous studies.


2011 ◽  
Vol 66 (6-7) ◽  
pp. 427-440 ◽  
Author(s):  
Nasser S. Elgazery ◽  
Nader Y. Abd Elazem

A mathematical model will be analyzed in order to study the effects of viscous dissipation and Ohmic heating (Joule heating) on magnetohydrodynamic (MHD) natural convection flow of a temperature dependent viscosity from heated vertical wavy surface. The present physical problem is studied numerically by using the appropriate variables, which reduce the complex wavy surface into a flat one. An implicit marching Chebyshev collocation scheme is employed for the analysis. Numerical solutions are obtained for velocity, temperature, local skin friction, and Nusselt number for a selection of parameter sets consisting of Eckert number, Prandtl number, MHD variation, and amplitude-wavelength ratio parameter. Numerical results show that these parameters have significant influences on the velocity and the temperature profiles as well as for the local skin friction and Nusselt number


2008 ◽  
Vol 13 (1) ◽  
pp. 71-87 ◽  
Author(s):  
M. M. Rahman ◽  
T. Sultana

A two-dimensional steady convective flow of a micropolar fluid past a vertical porous flat plate in the presence of radiation with variable heat flux has been analyzed numerically. Using Darcy-Forchheimer model the corresponding momentum, microrotation and energy equations have been solved numerically. The local similarity solutions for the flow, microrotation and heat transfer characteristics are illustrated graphically for various material parameters. The effects of the pertinent parameters on the local skin friction coefficient, plate couple stress and the heat transfer are also calculated. It was shown that large Darcy parameter leads to decrease the velocity while it increases the angular velocity as well as temperature of the micropolar fluids. The rate of heat transfer in weakly concentrated micropolar fluids is higher than strongly concentrated micropolar fluids.


2013 ◽  
Vol 42 (1) ◽  
pp. 47-55
Author(s):  
N. Parveen ◽  
M. A. Alim

The present numerical simulation is analyzed the Magnetohydrodynamic natural convection flow andheat transfer along a uniformly heated vertical wavy surface in presence of heat generation/absorption withtemperature dependent variable viscosity. Using the appropriate transformations the governing boundary layerequations are reduced to non-dimensional forms. The resulting nonlinear system of partial differentialequations are mapped into the domain of a vertical flat plate and then solved numerically applying implicitfinite difference method together with Keller-box scheme. The solutions are expressed in terms of the skinfriction coefficient, the rate of heat transfer, the streamlines as well as the isotherms over the whole boundarylayer. The implications of heat generation/absorption parameter (Q) and viscosity parameter (?) on the flowstructure and heat transfer characteristics are investigated in detail while, Prandtl number (Pr), magneticparameter (M) and the amplitude-to-length ratio of the wavy surface (?) are considered fixed. Comparison withpreviously published work is performed and is found to be in good agreement.DOI: http://dx.doi.org/10.3329/jme.v42i1.15944


1970 ◽  
Vol 39 (1) ◽  
pp. 50-56
Author(s):  
Tahmina Akhter ◽  
MA Alim

The effects of radiation on natural convection flow around a sphere with uniform surface heat flux have been investigated in this paper. We have considered here a sphere with uniform surface heat flux immersed in a viscous incompressible optically thick fluid. The governing equations are first transformed into non-dimensional form and the resulting nonlinear systems of partial differential equations are then solved numerically using Finite-difference method with Keller-box scheme. We have focused our attention on the evolution of the shear stress in terms of local skin friction coefficient and the rate of heat transfer in terms of local Nusselt number. Also, velocity as well as temperature profiles are shown graphically for some selected values of radiation parameter (Rd), surface temperature parameter (D) and Prandtl number (Pr). Keywords: Thermal radiation, Prandtl number, natural convection, uniform surface heat flux. doi:10.3329/jme.v39i1.1834 Journal of Mechanical Engineering, vol. ME39, No. 1, June 2008 50-56


2013 ◽  
Vol 74 ◽  
pp. 115-127 ◽  
Author(s):  
Ali Reza Teymourtash ◽  
Danyal Rezaei Khonakdar ◽  
Mohammad Reza Raveshi

Sign in / Sign up

Export Citation Format

Share Document