radiation heat flux
Recently Published Documents


TOTAL DOCUMENTS

84
(FIVE YEARS 14)

H-INDEX

10
(FIVE YEARS 2)

2021 ◽  
Vol 30 (3) ◽  
pp. 383-403
Author(s):  
A. V. Nenarokomov ◽  
D. L. Reviznikov ◽  
D. A. Neverova ◽  
E. V. Chebakov ◽  
A. V. Morzhukhina ◽  
...  

Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3986 ◽  
Author(s):  
Ali Ettaleb ◽  
Mohamed Abbassi ◽  
Habib Farhat ◽  
Kamel Guedri ◽  
Ahmed Omri ◽  
...  

This study aims to numerically investigate the radiation heat transfer in a complex, 3-D biomass pyrolysis reactor which is consisted of two pyrolysis chambers and a heat recuperator. The medium assumes to be gray, absorbs, emits, and Mie-anisotropically scatters the radiation energy. The finite volume method (FVM) is applied to solve the radiation transfer equation (RTE) using the step scheme. To treat the complex geometry, the blocked-off-region procedure is employed. Mie equations (ME) are applied to evaluate the scattering phase function and analyze the angular distribution of the anisotropically scattered radiation by particles. In this study, three different states are considered to test the anisotropic scattering impacts on the temperature and radiation heat flux distribution. These states are as: (i) Isotropic scattering, (ii) forward and backward scattering and (iii) scattering with solid particles of different coals and fly ash. The outcomes demonstrate that the radiation heat flux enhances by an increment of the albedo and absorption coefficients for the coals and fly ash, unlike the isotropic case and the forward and backward scattering functions. Moreover, the particle size parameter does not have an important influence on the radiation heat flux, when the medium is thin optical. Its effect is more noticeable for higher extinction coefficients.


Sign in / Sign up

Export Citation Format

Share Document