scholarly journals Application of DGJ method for solving non-linear local fractional heat equations

2019 ◽  
Vol 23 (3 Part A) ◽  
pp. 1571-1576 ◽  
Author(s):  
Shu-Xian Deng ◽  
Xin-Xin Ge

In this paper, the initial value problem for a new non-linear local fractional heat equation is considered. The fractional complex transform method and the DGJ decomposition method are used to solve the problem, and the approximate analytical solutions are also obtained.

2019 ◽  
Vol 23 (Suppl. 3) ◽  
pp. 837-841 ◽  
Author(s):  
Shuxian Deng

Consider the non-linear local fractional heat equation. The fractional complex transform method and the Adomian decomposition method are used to solve the equation. The approximate analytical solutions are obtained.


2017 ◽  
Vol 69 (4) ◽  
pp. 854-872
Author(s):  
Tarek Saanouni

AbstractThe initial value problem for a semi-linear fractional heat equation is investigated. In the focusing case, global well-posedness and exponential decay are obtained. In the focusing sign, global and non global existence of solutions are discussed via the potential well method.


Author(s):  
Pinxia Wu ◽  
Weiwei Ling ◽  
Xiumei Li ◽  
Xichun He ◽  
Liangjin Xie

In this paper, we mainly focus on a fractal model of Fangzhu’s nanoscale surface for water collection which is established through He’s fractal derivative. Based on the fractal two-scale transform method, the approximate analytical solutions are obtained by the energy balance method and He’s frequency–amplitude formulation method with average residuals. Some specific numerical experiments of the model show that these two methods are simple and effective and can be adopted to other nonlinear fractal oscillators. In addition, these properties of the obtained solution reveal how to enhance the collection rate of Fangzhu by adjusting the smoothness of its surfaces.


2004 ◽  
Vol 272 (1-2) ◽  
pp. 469-470
Author(s):  
J. Warmiński ◽  
G. Litak ◽  
M.P. Cartmell ◽  
R. Khanin ◽  
M. Wiercigroch

2020 ◽  
Vol 4 (1) ◽  
pp. 448-455
Author(s):  
Mulugeta Andualem ◽  
◽  
Atinafu Asfaw ◽  

Nonlinear initial value problems are somewhat difficult to solve analytically as well as numerically related to linear initial value problems as their variety of natures. Because of this, so many scientists still searching for new methods to solve such nonlinear initial value problems. However there are many methods to solve it. In this article we have discussed about the approximate solution of nonlinear first order ordinary differential equation using ZZ decomposition method. This method is a combination of the natural transform method and Adomian decomposition method.


Author(s):  
Nemat Dalir

Singular nonlinear initial-value problems (IVPs) in first-order and second-order partial differential equations (PDEs) arising in fluid mechanics are semianalytically solved. To achieve this, the modified decomposition method (MDM) is used in conjunction with some new inverse differential operators. In other words, new inverse differential operators are developed for the MDM and used with the MDM to solve first- and second-order singular nonlinear PDEs. The results of the solutions by the MDM together with new inverse operators are compared with the existing exact analytical solutions. The comparisons show excellent agreement.


1964 ◽  
Vol 4 (02) ◽  
pp. 96-114 ◽  
Author(s):  
G. Rowan ◽  
M.W. Clegg

Abstract Approximate analytical solutions for non-Darcy radial gas flow are derived for bounded and infinite reservoirs producing at either constant rate or constant pressure. These analytical solutions are compared with published results for non-Darcy flow obtained on digital and analogue computers, and the agreement is shown to be very good. Some observations on the interpretation of gas well tests are made. Introduction The flow of gases in porous media is a problem that has been the subject of much study in recent years, and many methods have been proposed for solving the non-linear equations associated with it. The assumption that the flow satisfies Darcy's Law (1) leads to a non-linear equation of the form (2) in a homogeneous medium, assuming an equation of state(3) It has been observed, however, that the linear relationship between the flow rate and pressure gradient is only approximately valid even at low flow rates, and that as the flow rate increases the deviations from linearity also increase. It has been suggested by a number of authors that Darcy's Law should be replaced by a quadratic flow law of the form (4) This form of equation was first suggested by Forchheimer and, later, Katz and Cornell, and Irmay, developed a similar equation. Houpeurt derived this form of equation using the concept of an idealized pore system in which each channel consists of sequences of truncated cones giving rise to successive restrictive orifices along the channel. This type of representation leads to a quadratic flow law of type, for all fluids, but it is found that the quadratic term is only significant in the case of gas flow. The methods of Houpeurt for solving gas flow problems will be discussed further in another section of this paper. Solutions of the non-linear equation for Darcy gas flow may be classified as either computer (digital and analogue), or approximate analytical ones. The former include the well-known solutions of Bruce et al., and Aronofsky and Jenkins, but the latter solutions, apart from the simple linearization of equation [2] to yield a diffusion equation in p2, are not so well-known. SPEJ P. 96ˆ


2017 ◽  
Vol 20 (6) ◽  
Author(s):  
Kexue Li

AbstractWe study the Cauchy problem for the semilinear fractional heat equation


Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 987 ◽  
Author(s):  
A. A. Alderremy ◽  
Hassan Khan ◽  
Rasool Shah ◽  
Shaban Aly ◽  
Dumitru Baleanu

This article is dealing with the analytical solution of Fornberg–Whitham equations in fractional view of Caputo operator. The effective method among the analytical techniques, natural transform decomposition method, is implemented to handle the solutions of the proposed problems. The approximate analytical solutions of nonlinear numerical problems are determined to confirm the validity of the suggested technique. The solution of the fractional-order problems are investigated for the suggested mathematical models. The solutions-graphs are then plotted to understand the effectiveness of fractional-order mathematical modeling over integer-order modeling. It is observed that the derived solutions have a closed resemblance with the actual solutions. Moreover, using fractional-order modeling various dynamics can be analyzed which can provide sophisticated information about physical phenomena. The simple and straight-forward procedure of the suggested technique is the preferable point and thus can be used to solve other nonlinear fractional problems.


Sign in / Sign up

Export Citation Format

Share Document