whitham equations
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 13)

H-INDEX

13
(FIVE YEARS 1)

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Naveed Iqbal ◽  
Humaira Yasmin ◽  
Akbar Ali ◽  
Abdul Bariq ◽  
M. Mossa Al-Sawalha ◽  
...  

In this paper, we investigate the numerical solution of the Fornberg-Whitham equations with the help of two powerful techniques: the modified decomposition technique and the modified variational iteration technique involving fractional-order derivatives with Mittag-Leffler kernel. To confirm and illustrate the accuracy of the proposed approach, we evaluated in terms of fractional order the projected models. Furthermore, the physical attitude of the results obtained has been acquired for the fractional-order different value graphs. The results demonstrated that the future method is easy to implement, highly methodical, and very effective in analyzing the behavior of complicated fractional-order linear and nonlinear differential equations existing in the related areas of applied science.


Author(s):  
İhsan Çelikkaya

Abstract In this study, the numerical solutions of the modified Fornberg–Whitham (mFW) equation, which describes immigration of the solitary wave and peakon waves with discontinuous first derivative at the peak, have been obtained by the collocation finite element method using quintic trigonometric B-spline bases. Although there are solutions of this equation by semi-analytical and analytical methods in the literature, there are very few studies on the solution of the equation by numerical methods. Any linearization technique has not been used while applying the method. The stability analysis of the applied method is examined by the von-Neumann Fourier series method. To show the performance of the method, we have considered three test problems with nonhomogeneous boundary conditions having analytical solutions. The error norms L 2 and L ∞ are calculated to demonstrate the accuracy and efficiency of the presented numerical scheme.


Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 784
Author(s):  
Pongsakorn Sunthrayuth ◽  
Ahmed M. Zidan ◽  
Shao-Wen Yao ◽  
Rasool Shah ◽  
Mustafa Inc

In this article, we also introduced two well-known computational techniques for solving the time-fractional Fornberg–Whitham equations. The methods suggested are the modified form of the variational iteration and Adomian decomposition techniques by ρ-Laplace. Furthermore, an illustrative scheme is introduced to verify the accuracy of the available methods. The graphical representation of the exact and derived results is presented to show the suggested approaches reliability. The comparative solution analysis via graphs also represented the higher reliability and accuracy of the current techniques.


2020 ◽  
Vol 31 (1) ◽  
Author(s):  
Thomas J. Bridges ◽  
Daniel J. Ratliff

AbstractThe multiphase Whitham modulation equations with N phases have 2N characteristics which may be of hyperbolic or elliptic type. In this paper, a nonlinear theory is developed for coalescence, where two characteristics change from hyperbolic to elliptic via collision. Firstly, a linear theory develops the structure of colliding characteristics involving the topological sign of characteristics and multiple Jordan chains, and secondly, a nonlinear modulation theory is developed for transitions. The nonlinear theory shows that coalescing characteristics morph the Whitham equations into an asymptotically valid geometric form of the two-way Boussinesq equation, that is, coalescing characteristics generate dispersion, nonlinearity and complex wave fields. For illustration, the theory is applied to coalescing characteristics associated with the modulation of two-phase travelling wave solutions of coupled nonlinear Schrödinger equations, highlighting how collisions can be identified and the relevant dispersive dynamics constructed.


Author(s):  
Mark J. Ablowitz ◽  
Justin T. Cole ◽  
Igor Rumanov

The semi-classical Korteweg–de Vries equation for step-like data is considered with a small parameter in front of the highest derivative. Using perturbation analysis, Whitham theory is constructed to the higher order. This allows the order one phase and the complete leading-order solution to be obtained; the results are confirmed by extensive numerical calculations.


Nonlinearity ◽  
2020 ◽  
Vol 33 (8) ◽  
pp. 4114-4132
Author(s):  
Gino Biondini ◽  
Mark A Hoefer ◽  
Antonio Moro

Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 987 ◽  
Author(s):  
A. A. Alderremy ◽  
Hassan Khan ◽  
Rasool Shah ◽  
Shaban Aly ◽  
Dumitru Baleanu

This article is dealing with the analytical solution of Fornberg–Whitham equations in fractional view of Caputo operator. The effective method among the analytical techniques, natural transform decomposition method, is implemented to handle the solutions of the proposed problems. The approximate analytical solutions of nonlinear numerical problems are determined to confirm the validity of the suggested technique. The solution of the fractional-order problems are investigated for the suggested mathematical models. The solutions-graphs are then plotted to understand the effectiveness of fractional-order mathematical modeling over integer-order modeling. It is observed that the derived solutions have a closed resemblance with the actual solutions. Moreover, using fractional-order modeling various dynamics can be analyzed which can provide sophisticated information about physical phenomena. The simple and straight-forward procedure of the suggested technique is the preferable point and thus can be used to solve other nonlinear fractional problems.


Sign in / Sign up

Export Citation Format

Share Document