scholarly journals Approximate analytical solutions of non-linear local fractional heat equations

2019 ◽  
Vol 23 (Suppl. 3) ◽  
pp. 837-841 ◽  
Author(s):  
Shuxian Deng

Consider the non-linear local fractional heat equation. The fractional complex transform method and the Adomian decomposition method are used to solve the equation. The approximate analytical solutions are obtained.

2019 ◽  
Vol 23 (3 Part A) ◽  
pp. 1571-1576 ◽  
Author(s):  
Shu-Xian Deng ◽  
Xin-Xin Ge

In this paper, the initial value problem for a new non-linear local fractional heat equation is considered. The fractional complex transform method and the DGJ decomposition method are used to solve the problem, and the approximate analytical solutions are also obtained.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Fatemah Mofarreh ◽  
A. M. Zidan ◽  
Muhammad Naeem ◽  
Rasool Shah ◽  
Roman Ullah ◽  
...  

This paper investigates a modified analytical method called the Adomian decomposition transform method for solving fractional-order heat equations with the help of the Caputo-Fabrizio operator. The Laplace transform and the Adomian decomposition method are implemented to obtain the result of the given models. The validity of the proposed method is verified by considering some numerical problems. The solution achieved has shown that the better accuracy of the suggested method. Furthermore, due to the straightforward implementation, the proposed method can solve other nonlinear fractional-order problems.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Beong In Yun

We propose an iterative method for solving the Falkner-Skan equation. The method provides approximate analytical solutions which consist of coefficients of the previous iterate solution. By some examples, we show that the presented method with a small number of iterations is competitive with the existing method such as Adomian decomposition method. Furthermore, to improve the accuracy of the proposed method, we suggest an efficient correction method. In practice, for some examples one can observe that the correction method results in highly improved approximate solutions.


2020 ◽  
Vol 4 (1) ◽  
pp. 448-455
Author(s):  
Mulugeta Andualem ◽  
◽  
Atinafu Asfaw ◽  

Nonlinear initial value problems are somewhat difficult to solve analytically as well as numerically related to linear initial value problems as their variety of natures. Because of this, so many scientists still searching for new methods to solve such nonlinear initial value problems. However there are many methods to solve it. In this article we have discussed about the approximate solution of nonlinear first order ordinary differential equation using ZZ decomposition method. This method is a combination of the natural transform method and Adomian decomposition method.


Sign in / Sign up

Export Citation Format

Share Document