scholarly journals Non-classical heat equation with singular memory term

2021 ◽  
Vol 25 (Spec. issue 2) ◽  
pp. 219-226
Author(s):  
Van Ho

In this paper, we consider the non-classical heat equation with singular memory term. This equation has many applications in various fields, for example liquids mechanics, solid mechanics, and heat conduction theory first, we prove that the solution exists locally in time. Then we investigate the converegence of the mild solution of non-classical heat equation, and the mild solution of classical heat equation.

Author(s):  
Antonio Campo

For the analysis of unsteady heat conduction in solid bodies comprising heat exchange by forced convection to nearby fluids, the two feasible models are (1) the differential or distributed model and (2) the lumped capacitance model. In the latter model, the suited lumped heat equation is linear, separable, and solvable in exact, analytic form. The linear lumped heat equation is constrained by the lumped Biot number criterion Bil=h¯(V/S)/ks < 0.1, where the mean convective coefficient h¯ is affected by the imposed fluid velocity. Conversely, when the heat exchange happens by natural convection, the pertinent lumped heat equation turns nonlinear because the mean convective coefficient h¯ depends on the instantaneous mean temperature in the solid body. Undoubtedly, the nonlinear lumped heat equation must be solved with a numerical procedure, such as the classical Runge–Kutta method. Also, due to the variable mean convective coefficient h¯ (T), the lumped Biot number criterion Bil=h¯(V/S)/ks < 0.1 needs to be adjusted to Bil,max=h¯max(V/S)/ks < 0.1. Here, h¯max in natural convection cooling stands for the maximum mean convective coefficient at the initial temperature Tin and the initial time t = 0. Fortunately, by way of a temperature transformation, the nonlinear lumped heat equation can be homogenized and later channeled through a nonlinear Bernoulli equation, which admits an exact, analytic solution. This simple route paves the way to an exact, analytic mean temperature distribution T(t) applicable to a class of regular solid bodies: vertical plate, vertical cylinder, horizontal cylinder, and sphere; all solid bodies constricted by the modified lumped Biot number criterion Bil,max<0.1.


1985 ◽  
Vol 38 (5-6) ◽  
pp. 1051-1070 ◽  
Author(s):  
R. Artuso ◽  
V. Benza ◽  
A. Frigerio ◽  
V. Gorini ◽  
E. Montaldi

2012 ◽  
Vol 524 (8) ◽  
pp. 470-478 ◽  
Author(s):  
P. Ván ◽  
T. Fülöp

2020 ◽  
Vol 45 (3) ◽  
pp. 223-246
Author(s):  
Roula Al Nahas ◽  
Alexandre Charles ◽  
Benoît Panicaud ◽  
Emmanuelle Rouhaud ◽  
Israa Choucair ◽  
...  

AbstractThe question of frame-indifference of the thermomechanical models has to be addressed to deal correctly with the behavior of matter undergoing finite transformations. In this work, we propose to test a spacetime formalism to investigate the benefits of the covariance principle for application to covariant modeling and numerical simulations for finite transformations. Several models especially for heat conduction are proposed following this framework and next compared to existing models. This article also investigates numerical simulations using the heat equation with two different thermal dissipative models for heat conduction, without thermomechanical couplings. The numerical comparison between the spacetime thermal models derived in this work and the corresponding Newtonian thermal models, which adds the time as a discretized variable, is also performed through an example to investigate their advantages and drawbacks.


2019 ◽  
Vol 53 (1) ◽  
pp. 57-72
Author(s):  
Marcos Josías Ceballos-Lira ◽  
Aroldo Pérez

In this paper we prove the local existence of a nonnegative mild solution for a nonautonomous semilinear heat equation with Dirichlet condition, and give sucient conditions for the globality and for the blow up infinite time of the mild solution. Our approach for the global existence goes back to the Weissler's technique and for the nite time blow up we uses the intrinsic ultracontractivity property of the semigroup generated by the diffusion operator.


Author(s):  
Ruixian Cai ◽  
Na Zhang

The analytical solutions of unsteady heat conduction with variable thermal properties (thermal conductivity, density and specific heat are functions of temperature or coordinates) are meaningful in theory. In addition, they are very useful to the computational heat conduction to check the numerical solutions and to develop numerical schemes, grid generation methods and so forth. Such solutions in rectangular coordinates have been derived by the authors; some other solutions for unsteady point symmetrical heat conduction in spherical coordinates are given in this paper to promote the heat conduction theory and to develop the relative computational heat conduction.


2009 ◽  
Author(s):  
B. Lovelace ◽  
A. W. Haberl ◽  
H. Bakhru ◽  
J. C. Kimball ◽  
R. E. Benenson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document