Filtering of Markov renewal queues, IV: Flow processes in feedback queues

1985 ◽  
Vol 17 (2) ◽  
pp. 386-407 ◽  
Author(s):  
Jeffrey J. Hunter

This paper is a continuation of the study of a class of queueing systems where the queue-length process embedded at basic transition points, which consist of ‘arrivals’, ‘departures’ and ‘feedbacks’, is a Markov renewal process (MRP). The filtering procedure of Çinlar (1969) was used in [12] to show that the queue length process embedded separately at ‘arrivals’, ‘departures’, ‘feedbacks’, ‘inputs’ (arrivals and feedbacks), ‘outputs’ (departures and feedbacks) and ‘external’ transitions (arrivals and departures) are also MRP. In this paper expressions for the elements of each Markov renewal kernel are derived, and thence expressions for the distribution of the times between transitions, under stationary conditions, are found for each of the above flow processes. In particular, it is shown that the inter-event distributions for the arrival process and the departure process are the same, with an equivalent result holding for inputs and outputs. Further, expressions for the stationary joint distributions of successive intervals between events in each flow process are derived and interconnections, using the concept of reversed Markov renewal processes, are explored. Conditions under which any of the flow processes are renewal processes or, more particularly, Poisson processes are also investigated. Special cases including, in particular, the M/M/1/N and M/M/1 model with instantaneous Bernoulli feedback, are examined.

1985 ◽  
Vol 17 (02) ◽  
pp. 386-407
Author(s):  
Jeffrey J. Hunter

This paper is a continuation of the study of a class of queueing systems where the queue-length process embedded at basic transition points, which consist of ‘arrivals’, ‘departures’ and ‘feedbacks’, is a Markov renewal process (MRP). The filtering procedure of Çinlar (1969) was used in [12] to show that the queue length process embedded separately at ‘arrivals’, ‘departures’, ‘feedbacks’, ‘inputs’ (arrivals and feedbacks), ‘outputs’ (departures and feedbacks) and ‘external’ transitions (arrivals and departures) are also MRP. In this paper expressions for the elements of each Markov renewal kernel are derived, and thence expressions for the distribution of the times between transitions, under stationary conditions, are found for each of the above flow processes. In particular, it is shown that the inter-event distributions for the arrival process and the departure process are the same, with an equivalent result holding for inputs and outputs. Further, expressions for the stationary joint distributions of successive intervals between events in each flow process are derived and interconnections, using the concept of reversed Markov renewal processes, are explored. Conditions under which any of the flow processes are renewal processes or, more particularly, Poisson processes are also investigated. Special cases including, in particular, the M/M/1/N and M/M/1 model with instantaneous Bernoulli feedback, are examined.


1983 ◽  
Vol 15 (02) ◽  
pp. 349-375 ◽  
Author(s):  
Jeffrey J. Hunter

Queueing systems which can be formulated as Markov renewal processes with basic transitions of three types, ‘arrivals', ‘departures' and ‘feedbacks' are examined. The filtering procedure developed for Markov renewal processes by Çinlar (1969) is applied to such queueing models to show that the queue-length processes embedded at any of the ‘arrival', ‘departure', ‘feedback', ‘input', ‘output' or ‘external' transition epochs are also Markov renewal. In this part we focus attention on the derivation of stationary and limiting distributions (when they exist) for each of the embedded discrete-time processes, the embedded Markov chains. These results are applied to birth–death queues with instantaneous state-dependent feedback including the special cases of M/M/1/N and M/M/1 queues with instantaneous Bernoulli feedback.


1984 ◽  
Vol 16 (2) ◽  
pp. 422-436 ◽  
Author(s):  
Jeffrey J. Hunter

In Part I (Hunter) a study of feedback queueing models was initiated. For such models the queue-length process embedded at all transition points was formulated as a Markov renewal process (MRP). This led to the observation that the queue-length processes embedded at any of the ‘arrival', ‘departure', ‘feedback', ‘input', ‘output' or ‘external' transition epochs are also MRP. Part I concentrated on the properties of the embedded discrete-time Markov chains. In this part we examine the semi-Markov processes associated with each of these embedded MRP and derive expressions for the stationary distributions associated with their irreducible subspaces. The special cases of birth-death queues with instantaneous state-dependent feedback, M/M/1/N and M/M/1 queues with instantaneous Bernoulli feedback are considered in detail. The results obtained complement those derived in Part II (Hunter) for birth-death queues without feedback.


1984 ◽  
Vol 16 (02) ◽  
pp. 422-436 ◽  
Author(s):  
Jeffrey J. Hunter

In Part I (Hunter) a study of feedback queueing models was initiated. For such models the queue-length process embedded at all transition points was formulated as a Markov renewal process (MRP). This led to the observation that the queue-length processes embedded at any of the ‘arrival', ‘departure', ‘feedback', ‘input', ‘output' or ‘external' transition epochs are also MRP. Part I concentrated on the properties of the embedded discrete-time Markov chains. In this part we examine the semi-Markov processes associated with each of these embedded MRP and derive expressions for the stationary distributions associated with their irreducible subspaces. The special cases of birth-death queues with instantaneous state-dependent feedback, M/M/1/N and M/M/1 queues with instantaneous Bernoulli feedback are considered in detail. The results obtained complement those derived in Part II (Hunter) for birth-death queues without feedback.


1983 ◽  
Vol 15 (2) ◽  
pp. 349-375 ◽  
Author(s):  
Jeffrey J. Hunter

Queueing systems which can be formulated as Markov renewal processes with basic transitions of three types, ‘arrivals', ‘departures' and ‘feedbacks' are examined. The filtering procedure developed for Markov renewal processes by Çinlar (1969) is applied to such queueing models to show that the queue-length processes embedded at any of the ‘arrival', ‘departure', ‘feedback', ‘input', ‘output' or ‘external' transition epochs are also Markov renewal. In this part we focus attention on the derivation of stationary and limiting distributions (when they exist) for each of the embedded discrete-time processes, the embedded Markov chains. These results are applied to birth–death queues with instantaneous state-dependent feedback including the special cases of M/M/1/N and M/M/1 queues with instantaneous Bernoulli feedback.


Author(s):  
Yang Woo Shin ◽  
Chareles E. M. Pearce

AbstractWe treat a single-server vacation queue with queue-length dependent vacation schedules. This subsumes the single-server vacation queue with exhaustive service discipline and the vacation queue with Bernoulli schedule as special cases. The lengths of vacation times depend on the number of customers in the system at the beginning of a vacation. The arrival process is a batch-Markovian arrival process (BMAP). We derive the queue-length distribution at departure epochs. By using a semi-Markov process technique, we obtain the Laplace-Stieltjes transform of the transient queue-length distribution at an arbitrary time point and its limiting distribution


2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
A. D. Banik

We consider a finite-buffer single server queueing system with queue-length dependent vacations where arrivals occur according to a batch Markovian arrival process (BMAP). The service discipline is P-limited service, also called E-limited with limit variation (ELV) where the server serves until either the system is emptied or a randomly chosen limit of L customers has been served. Depending on the number of customers present in the system, the server will monitor his vacation times. Queue-length distributions at various epochs such as before, arrival, arbitrary and after, departure have been obtained. Several other service disciplines like Bernoulli scheduling, nonexhaustive service, and E-limited service can be treated as special cases of the P-limited service. Finally, the total expected cost function per unit time is considered to determine locally optimal values N* of N or a maximum limit L^* of L^ as the number of customers served during a service period at a minimum cost.


1986 ◽  
Vol 18 (02) ◽  
pp. 533-557 ◽  
Author(s):  
Marcel F. Neuts

We consider a new embedded Markov chain for the PH/G/1 queue by recording the queue length, the phase of the arrival process and the number of services completed during the current busy period at the successive departure epochs. Algorithmically tractable matrix formulas are obtained which permit the analysis of the fluctuations of the queue length and waiting times during a typical busy cycle. These are useful in the computation of certain profile curves arising in the statistical analysis of queues. In addition, informative expressions for the mean waiting times in the stable GI/G/1 queue and a simple new algorithm to evaluate the waiting-time distributions for the stationary PH/PH/1 queue are obtained.


1998 ◽  
Vol 12 (1) ◽  
pp. 25-48 ◽  
Author(s):  
Ger Koole ◽  
Zhen Liu

Consider a queueing system where the input traffic consists of background traffic, modeled by a Markov Arrival Process, and foreground traffic modeled by N ≥ 1 homogeneous on–off sources. The queueing system has an increasing and concave service rate, which includes as a particular case multiserver queueing systems. Both the infinite-capacity and the finite-capacity buffer cases are analyzed. We show that the queue length in the infinite-capacity buffer system (respectively, the number of losses in the finite-capacity buffer system) is larger in the increasing convex order sense (respectively, the strong stochastic order sense) than the queue length (respectively, the number of losses) of the queueing system with the same background traffic and M N homogeneous on–off sources of the same total intensity as the foreground traffic, where M is an arbitrary integer. As a consequence, the queue length and the loss with a foreground traffic of multiple homogeneous on–off sources is upper bounded by that with a single on–off source and lower bounded by a Poisson source, where the bounds are obtained in the increasing convex order (respectively, the strong stochastic order). We also compare N ≥ 1 homogeneous arbitrary two-state Markov Modulated Poisson Process sources. We prove the monotonicity of the queue length in the transition rates and its convexity in the arrival rates. Standard techniques could not be used due to the different state spaces that we compare. We propose a new approach for the stochastic comparison of queues using dynamic programming which involves initially stationary arrival processes.


1983 ◽  
Vol 15 (2) ◽  
pp. 376-391 ◽  
Author(s):  
Jeffrey J. Hunter

In this part we extend and particularise results developed by the author in Part I (pp. 349–375) for a class of queueing systems which can be formulated as Markov renewal processes. We examine those models where the basic transition consists of only two types: ‘arrivals' and ‘departures'. The ‘arrival lobby' and ‘departure lobby' queue-length processes are shown, using the results of Part I to be Markov renewal. Whereas the initial study focused attention on the behaviour of the embedded discrete-time Markov chains, in this paper we examine, in detail, the embedded continuous-time semi-Markov processes. The limiting distributions of the queue-length processes in both continuous and discrete time are derived and interrelationships between them are examined in the case of continuous-time birth–death queues including the M/M/1/M and M/M/1 variants. Results for discrete-time birth–death queues are also derived.


Sign in / Sign up

Export Citation Format

Share Document