classical propositional calculus
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 5)

H-INDEX

8
(FIVE YEARS 0)

Axioms ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 142
Author(s):  
Janusz Ciuciura

In this paper, we consider some paraconsistent calculi in a Hilbert-style formulation with the rule of detachment as the sole rule of interference. Each calculus will be expected to contain all axiom schemas of the positive fragment of classical propositional calculus and respect the principle of gentle explosion.


2020 ◽  
Vol 2 (4) ◽  
pp. 600-616
Author(s):  
Andrea Oldofredi

It is generally accepted that quantum mechanics entails a revision of the classical propositional calculus as a consequence of its physical content. However, the universal claim according to which a new quantum logic is indispensable in order to model the propositions of every quantum theory is challenged. In the present essay, we critically discuss this claim by showing that classical logic can be rehabilitated in a quantum context by taking into account Bohmian mechanics. It will be argued, indeed, that such a theoretical framework provides the necessary conceptual tools to reintroduce a classical logic of experimental propositions by virtue of its clear metaphysical picture and its theory of measurement. More precisely, it will be shown that the rehabilitation of a classical propositional calculus is a consequence of the primitive ontology of the theory, a fact that is not yet sufficiently recognized in the literature concerning Bohmian mechanics. This work aims to fill this gap.


Author(s):  
A. Salibra ◽  
A. Bucciarelli ◽  
A. Ledda ◽  
F. Paoli

Abstract We introduce Boolean-like algebras of dimension n ($$n{\mathrm {BA}}$$ n BA s) having n constants $${{{\mathsf {e}}}}_1,\ldots ,{{{\mathsf {e}}}}_n$$ e 1 , … , e n , and an $$(n+1)$$ ( n + 1 ) -ary operation q (a “generalised if-then-else”) that induces a decomposition of the algebra into n factors through the so-called n-central elements. Varieties of $$n{\mathrm {BA}}$$ n BA s share many remarkable properties with the variety of Boolean algebras and with primal varieties. The $$n{\mathrm {BA}}$$ n BA s provide the algebraic framework for generalising the classical propositional calculus to the case of n–perfectly symmetric–truth-values. Every finite-valued tabular logic can be embedded into such a n-valued propositional logic, $$n{\mathrm {CL}}$$ n CL , and this embedding preserves validity. We define a confluent and terminating first-order rewriting system for deciding validity in $$n{\mathrm {CL}}$$ n CL , and, via the embeddings, in all the finite tabular logics.


2019 ◽  
Vol 12 (3) ◽  
pp. 487-535
Author(s):  
WESLEY H. HOLLIDAY ◽  
TADEUSZ LITAK

AbstractIn this article, we tell a story about incompleteness in modal logic. The story weaves together an article of van Benthem (1979), “Syntactic aspects of modal incompleteness theorems,” and a longstanding open question: whether every normal modal logic can be characterized by a class ofcompletely additivemodal algebras, or as we call them,${\cal V}$-baos. Using a first-order reformulation of the property of complete additivity, we prove that the modal logic that starred in van Benthem’s article resolves the open question in the negative. In addition, for the case of bimodal logic, we show that there is a naturally occurring logic that is incomplete with respect to${\cal V}$-baos, namely the provability logic$GLB$(Japaridze, 1988; Boolos, 1993). We also show that even logics that are unsound with respect to such algebras do not have to be more complex than the classical propositional calculus. On the other hand, we observe that it is undecidable whether a syntactically defined logic is${\cal V}$-complete. After these results, we generalize the Blok Dichotomy (Blok, 1978) to degrees of${\cal V}$-incompleteness. In the end, we return to van Benthem’s theme of syntactic aspects of modal incompleteness.


2014 ◽  
Vol 11 (2) ◽  
Author(s):  
Matthew Spinks ◽  
Robert Bignall ◽  
Robert Veroff

A discriminator logic is the 1-assertional logic of a discriminator variety V having two constant terms 0 and 1 such that V ⊨ 0 1 iff every member of V is trivial. Examples of such logics abound in the literature. The main result of this research announcement asserts that a certain non-Fregean deductive system SBPC, which closely resembles the classical propositional calculus, is canonical for the class of discriminator logics in the sense that any discriminator logic S can be presented (up to definitional equivalence) as an axiomatic extension of SBPC by a set of extensional logical connectives taken from the language of S. The results outlined in this research announcement are extended to several generalisations of the class of discriminator logics in the main work. 


2006 ◽  
Vol 364 (2) ◽  
pp. 146-165 ◽  
Author(s):  
Gianluigi Bellin ◽  
Martin Hyland ◽  
Edmund Robinson ◽  
Christian Urban

1995 ◽  
Vol 1 (4) ◽  
pp. 425-467 ◽  
Author(s):  
Alasdair Urquhart

§1. Introduction. The classical propositional calculus has an undeserved reputation among logicians as being essentially trivial. I hope to convince the reader that it presents some of the most challenging and intriguing problems in modern logic. Although the problem of the complexity of propositional proofs is very natural, it has been investigated systematically only since the late 1960s. Interest in the problem arose from two fields connected with computers, automated theorem proving and computational complexity theory. The earliest paper in the subject is a ground-breaking article by Tseitin [62], the published version of a talk given in 1966 at a Leningrad seminar. In the three decades since that talk, substantial progress has been made in determining the relative complexity of proof systems, and in proving strong lower bounds for some restricted proof systems. However, major problems remain to challenge researchers. The present paper provides a survey of the field, and of some of the techniques that have proved successful in deriving lower bounds on the complexity of proofs. A major area only touched upon here is the proof theory of bounded arithmetic and its relation to the complexity of propositional proofs. The reader is referred to the book by Buss [10] for background in bounded arithmetic. The forthcoming book by Krajíček [40] also gives a good introduction to bounded arithmetic, as well as covering most of the basic results in complexity of propositional proofs.


Dialogue ◽  
1995 ◽  
Vol 34 (4) ◽  
pp. 807-814
Author(s):  
Nicholas Griffin

It would be hard to deny that there is some modal doctrine in Wittgenstein's Tractatus, for the Tractatus contains the standard semantics for the classical propositional calculus and the standard semantics is modal. Moreover, the work makes serious use of modal concepts, especially that of a possible state of affairs (möglich Sachverhalt). Given the centrality of this notion, it is curious that commentators have so readily ignored the modal aspects of the Tractatus Raymond Bradley's excellent, full-blown study of Wittgenstein's early modalism is, therefore, all the more welcome as a corrective.


Sign in / Sign up

Export Citation Format

Share Document