A rudimentary definition of addition

1965 ◽  
Vol 30 (3) ◽  
pp. 350-354 ◽  
Author(s):  
R. W. Ritchie

In [S, pp. 77–88], Smullyan introduced the class of rudimentary relations, and showed that they form a basis for the recursively enumerable sets. He also asked [S, p. 81] if the addition and multiplication relations were rudimentary. In this note we answer one of these questions by showing that the addition relation is rudimentary. This result was communicated to Smullyan orally in 1960 and is announced in [S, p. 81, footnote 1]. However, the proof has not yet appeared in print. (Shortly after the publication of [S], James H. Bennett, using much more subtle methods than those of this note, showed that the multiplication relation is also rudimentary. That result appears in his doctoral dissertation [B], and is being prepared for publication.)Let us begin by reviewing Smullyan's definition [S, p. 10] of dyadic notation for the positive integers. Each positive integerais identified with the unique stringanan−1…a1a0of 1's and 2's such thata= Σin=0ai2iBecause of this identification, we are able to speak of typographical properties of numbers.

1993 ◽  
Vol 58 (4) ◽  
pp. 1177-1188 ◽  
Author(s):  
John Todd Hammond

Let ω be the set of natural numbers, let be the lattice of recursively enumerable subsets of ω, and let A be the lattice of subsets of ω which are recursively enumerable in A. If U, V ⊆ ω, put U =* V if the symmetric difference of U and V is finite.A natural and interesting question is then to discover what the relation is between the Turing degree of A and the isomorphism class of A. The first result of this form was by Lachlan, who proved [6] that there is a set A ⊆ ω such that A ≇ . He did this by finding a set A ⊆ ω and a set C ϵ A such that the structure ({W ϵ A∣W ⊇ C},∪,∩)/=* is a Boolean algebra and is not isomorphic to the structure ({W ϵ ∣W ⊇ D},∪,∩)/=* for any D ϵ . There is a nonrecursive ordinal which is recursive in the set A which he constructs, so his set A is not (see, for example, Shoenfield [11] for a definition of what it means for a set A ⊆ ω to be ). Feiner then improved this result substantially by proving [1] that for any B ⊆ ω, B′ ≇ B, where B′ is the Turing jump of B. To do this, he showed that for each X ⊆= ω there is a Boolean algebra which is but not and then applied a theorem of Lachlan [6] (definitions of and Boolean algebras will be given in §2). Feiner's result is of particular interest for the case B = ⊘, for it shows that the set A of Lachlan can actually be chosen to be arithmetical (in fact, ⊘′), answering a question that Lachlan posed in his paper. Little else has been known.


1982 ◽  
Vol 47 (3) ◽  
pp. 549-571 ◽  
Author(s):  
James P. Jones

In 1961 Martin Davis, Hilary Putnam and Julia Robinson [2] proved that every recursively enumerable set W is exponential diophantine, i.e. can be represented in the formHere P is a polynomial with integer coefficients and the variables range over positive integers.In 1970 Ju. V. Matijasevič used this result to establish the unsolvability of Hilbert's tenth problem. Matijasevič proved [11] that the exponential relation y = 2x is diophantine This together with [2] implies that every recursively enumerable set is diophantine, i.e. every r.e. set Wcan be represented in the formFrom this it follows that there does not exist an algorithm to decide solvability of diophantine equations. The nonexistence of such an algorithm follows immediately from the existence of r.e. nonrecursive sets.Now it is well known that the recursively enumerable sets W1, W2, W3, … can be enumerated in such a way that the binary relation x ∈ Wv is also recursively enumerable. Thus Matijasevič's theorem implies the existence of a diophantine equation U such that for all x and v,


Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1813
Author(s):  
S. Subburam ◽  
Lewis Nkenyereye ◽  
N. Anbazhagan ◽  
S. Amutha ◽  
M. Kameswari ◽  
...  

Consider the Diophantine equation yn=x+x(x+1)+⋯+x(x+1)⋯(x+k), where x, y, n, and k are integers. In 2016, a research article, entitled – ’power values of sums of products of consecutive integers’, primarily proved the inequality n= 19,736 to obtain all solutions (x,y,n) of the equation for the fixed positive integers k≤10. In this paper, we improve the bound as n≤ 10,000 for the same case k≤10, and for any fixed general positive integer k, we give an upper bound depending only on k for n.


Author(s):  
Artiom Alhazov ◽  
Rudolf Freund ◽  
Sergiu Ivanov

AbstractCatalytic P systems are among the first variants of membrane systems ever considered in this area. This variant of systems also features some prominent computational complexity questions, and in particular the problem of using only one catalyst in the whole system: is one catalyst enough to allow for generating all recursively enumerable sets of multisets? Several additional ingredients have been shown to be sufficient for obtaining computational completeness even with only one catalyst. In this paper, we show that one catalyst is sufficient for obtaining computational completeness if either catalytic rules have weak priority over non-catalytic rules or else instead of the standard maximally parallel derivation mode, we use the derivation mode maxobjects, i.e., we only take those multisets of rules which affect the maximal number of objects in the underlying configuration.


2018 ◽  
Vol 68 (5) ◽  
pp. 975-980
Author(s):  
Zhongyan Shen ◽  
Tianxin Cai

Abstract In 2014, Wang and Cai established the following harmonic congruence for any odd prime p and positive integer r, $$\sum_{\begin{subarray}{c}i+j+k=p^{r}\\ i,j,k\in\mathcal{P}_{p}\end{subarray}}\frac{1}{ijk}\equiv-2p^{r-1}B_{p-3} \quad\quad(\text{mod} \,\, {p^{r}}),$$ where $ \mathcal{P}_{n} $ denote the set of positive integers which are prime to n. In this note, we obtain the congruences for distinct odd primes p, q and positive integers α, β, $$ \sum_{\begin{subarray}{c}i+j+k=p^{\alpha}q^{\beta}\\ i,j,k\in\mathcal{P}_{2pq}\end{subarray}}\frac{1}{ijk}\equiv\frac{7}{8}\left(2-% q\right)\left(1-\frac{1}{q^{3}}\right)p^{\alpha-1}q^{\beta-1}B_{p-3}\pmod{p^{% \alpha}} $$ and $$ \sum_{\begin{subarray}{c}i+j+k=p^{\alpha}q^{\beta}\\ i,j,k\in\mathcal{P}_{pq}\end{subarray}}\frac{(-1)^{i}}{ijk}\equiv\frac{1}{2}% \left(q-2\right)\left(1-\frac{1}{q^{3}}\right)p^{\alpha-1}q^{\beta-1}B_{p-3}% \pmod{p^{\alpha}}. $$


1991 ◽  
Vol 14 (3) ◽  
pp. 457-462 ◽  
Author(s):  
Clark Kimberling

Associated with any irrational numberα>1and the functiong(n)=[αn+12]is an array{s(i,j)}of positive integers defined inductively as follows:s(1,1)=1,s(1,j)=g(s(1,j−1))for allj≥2,s(i,1)=the least positive integer not amongs(h,j)forh≤i−1fori≥2, ands(i,j)=g(s(i,j−1))forj≥2. This work considers algebraic integersαof degree≥3for which the rows of the arrays(i,j)partition the set of positive integers. Such an array is called a Stolarsky array. A typical result is the following (Corollary 2): ifαis the positive root ofxk−xk−1−…−x−1fork≥3, thens(i,j)is a Stolarsky array.


1961 ◽  
Vol 5 (1) ◽  
pp. 35-40 ◽  
Author(s):  
R. A. Rankin

For any positive integers n and v letwhere d runs through all the positive divisors of n. For each positive integer k and real x > 1, denote by N(v, k; x) the number of positive integers n ≦ x for which σv(n) is not divisible by k. Then Watson [6] has shown that, when v is odd,as x → ∞; it is assumed here and throughout that v and k are fixed and independent of x. It follows, in particular, that σ (n) is almost always divisible by k. A brief account of the ideas used by Watson will be found in § 10.6 of Hardy's book on Ramanujan [2].


Sign in / Sign up

Export Citation Format

Share Document