Some results for implicational calculi

1964 ◽  
Vol 29 (1) ◽  
pp. 33-39 ◽  
Author(s):  
R. A. Bull

I shall refer to the implicational fragment of intuitionist logic, and its extension with the further axiomCCCCpqqrCCCpqrras IIC and OIC, respectively. The purpose of this paper is to apply a result due to Garrett Birkhoff to the extensions of IIC, and to the extensions of OIC in particular. The main result obtained is that every extension of OIC is characterised by finite models.

1991 ◽  
Vol 14 (1) ◽  
pp. 91-108
Author(s):  
Jarosław Stepaniuk

The purpose of this paper is to investigate some aspects concerning elementary theories of finite models and to give the applications in approximation logics and algorithmic theory of dictionaries.


1992 ◽  
Vol 07 (supp01a) ◽  
pp. 217-238 ◽  
Author(s):  
BORIS L. FEIGIN ◽  
TOMOKI NAKANISHI ◽  
HIROSI OOGURI

We describe several aspects of the annihilating ideals and reduced chiral algebras of conformal field theories, especially, minimal models of Wn algebras. The structure of the annihilating ideal and a vanishing condition is given. Using the annihilating ideal, the structure of quasi-finite models of the Virasoro (2,q) minimal models are studied, and their intimate relation to the Gordon identities are discussed. We also show the examples in which the reduced algebras of Wn and Wℓ algebras at the same central charge are isomorphic to each other.


2012 ◽  
Vol 51 (3-4) ◽  
pp. 433-441
Author(s):  
Philipp Lücke ◽  
Saharon Shelah
Keyword(s):  

1980 ◽  
Vol 45 (2) ◽  
pp. 265-283 ◽  
Author(s):  
Matatyahu Rubin ◽  
Saharon Shelah

AbstractTheorem 1. (◊ℵ1,) If B is an infinite Boolean algebra (BA), then there is B1, such that ∣ Aut (B1) ≤∣B1∣ = ℵ1 and 〈B1, Aut (B1)〉 ≡ 〈B, Aut(B)〉.Theorem 2. (◊ℵ1) There is a countably compact logic stronger than first-order logic even on finite models.This partially answers a question of H. Friedman. These theorems appear in §§1 and 2.Theorem 3. (a) (◊ℵ1) If B is an atomic ℵ-saturated infinite BA, Ψ Є Lω1ω and 〈B, Aut (B)〉 ⊨Ψ then there is B1, Such that ∣Aut(B1)∣ ≤ ∣B1∣ =ℵ1, and 〈B1, Aut(B1)〉⊨Ψ. In particular if B is 1-homogeneous so is B1. (b) (a) holds for B = P(ω) even if we assume only CH.


2017 ◽  
Vol 12 (2) ◽  
Author(s):  
Marilynn Johnson

In An Introduction to Non-Classical Logic: From If to Is Graham Priest (2008) presents branching rules in Free Logic, Variable Domain Modal Logic, and Intuitionist Logic. I propose a simpler, non-branching rule to replace Priest’s rule for universal instantiation in Free Logic, a second, slightly modified version of this rule to replace Priest’s rule for universal instantiation in Variable Domain Modal Logic, and third and fourth rules, further modifying the second rule, to replace Priest’s branching universal and particular instantiation rules in Intuitionist Logic. In each of these logics the proposed rule leads to tableaux with fewer branches. In Intuitionist logic, the proposed rules allow for the resolution of a particular problem Priest grapples with throughout the chapter. In this paper, I demonstrate that the proposed rules can greatly simplify tableaux and argue that they should be used in place of the rules given by Priest.


1999 ◽  
Vol 46 (1) ◽  
pp. 93-117 ◽  
Author(s):  
Anuj Dawar
Keyword(s):  

2004 ◽  
Vol 69 (2) ◽  
pp. 329-339 ◽  
Author(s):  
Marko Djordjević

We will mainly be concerned with a result which refutes a stronger variant of a conjecture of Macpherson about finitely axiomatizable ω-categorical theories. Then we prove a result which implies that the ω-categorical stable pseudoplanes of Hrushovski do not have the finite submodel property.Let's call a consistent first-order sentence without finite models an axiom of infinity. Can we somehow describe the axioms of infinity? Two standard examples are:ϕ1: A first-order sentence which expresses that a binary relation < on a nonempty universe is transitive and irreflexive and that for every x there is y such that x < y.ϕ2: A first-order sentence which expresses that there is a unique x such that, (0) for every y, s(y) ≠ x (where s is a unary function symbol),and, for every x, if x does not satisfy (0) then there is a unique y such that s(y) = x.Every complete theory T such that ϕ1 ϵ T has the strict order property (as defined in [10]), since the formula x < y will have the strict order property for T. Let's say that if Ψ is an axiom of infinity and every complete theory T with Ψ ϵ T has the strict order property, then Ψ has the strict order property.Every complete theory T such that ϕ2 ϵ T is not ω-categorical. This is the case because a complete theory T without finite models is ω-categorical if and only if, for every 0 < n < ω, there are only finitely many formulas in the variables x1,…,xn, up to equivalence, in any model of T.


Sign in / Sign up

Export Citation Format

Share Document