Applications of Strict Π11 predicates to infinitary logic

1969 ◽  
Vol 34 (3) ◽  
pp. 409-423 ◽  
Author(s):  
Jon Barwise

Consider the predicate of natural numbers defined by: where R is recursive. If, as usual, the variable ƒ ranges over ωω (the set of functions from natural numbers to natural numbers) then this is just the usual normal form for Π11 sets. If, however, ƒ ranges over 2ω (the set of functions from ω into {0, 1}) then every such predicate is recursively enumerable.3 Thus the second type of formula is generally ignored. However, the reduction just mentioned requires proof, and the proof uses some form of the Brower-König Infinity Lemma.

1972 ◽  
Vol 37 (3) ◽  
pp. 572-578 ◽  
Author(s):  
Raphael M. Robinson

A set D of natural numbers is called Diophantine if it can be defined in the formwhere P is a polynomial with integer coefficients. Recently, Ju. V. Matijasevič [2], [3] has shown that all recursively enumerable sets are Diophantine. From this, it follows that a bound for n may be given.We use throughout the logical symbols ∧ (and), ∨ (or), → (if … then …), ↔ (if and only if), ⋀ (for every), and ⋁ (there exists); negation does not occur explicitly. The variables range over the natural numbers 0,1,2,3, …, except as otherwise noted.It is the purpose of this paper to show that if we do not insist on prenex form, then every Diophantine set can be defined existentially by a formula in which not more than five existential quantifiers are nested. Besides existential quantifiers, only conjunctions are needed. By Matijasevič [2], [3], the representation extends to all recursively enumerable sets. Using this, we can find a bound for the number of conjuncts needed.Davis [1] proved that every recursively enumerable set of natural numbers can be represented in the formwhere P is a polynomial with integer coefficients. I showed in [5] that we can take λ = 4. (A minor error is corrected in an Appendix to this paper.) By the methods of the present paper, we can again obtain this result, and indeed in a stronger form, with the universal quantifier replaced by a conjunction.


1956 ◽  
Vol 21 (2) ◽  
pp. 162-186 ◽  
Author(s):  
Raphael M. Robinson

A set S of natural numbers is called recursively enumerable if there is a general recursive function F(x, y) such thatIn other words, S is the projection of a two-dimensional general recursive set. Actually, it is no restriction on S to assume that F(x, y) is primitive recursive. If S is not empty, it is the range of the primitive recursive functionwhere a is a fixed element of S. Using pairing functions, we see that any non-empty recursively enumerable set is also the range of a primitive recursive function of one variable.We use throughout the logical symbols ⋀ (and), ⋁ (or), → (if…then…), ↔ (if and only if), ∧ (for every), and ∨(there exists); negation does not occur explicitly. The variables range over the natural numbers, except as otherwise noted.Martin Davis has shown that every recursively enumerable set S of natural numbers can be represented in the formwhere P(y, b, w, x1 …, xλ) is a polynomial with integer coefficients. (Notice that this would not be correct if we replaced ≤ by <, since the right side of the equivalence would always be satisfied by b = 0.) Conversely, every set S represented by a formula of the above form is recursively enumerable. A basic unsolved problem is whether S can be defined using only existential quantifiers.


1972 ◽  
Vol 37 (4) ◽  
pp. 677-682 ◽  
Author(s):  
George Metakides

Let α be a limit ordinal with the property that any “recursive” function whose domain is a proper initial segment of α has its range bounded by α. α is then called admissible (in a sense to be made precise later) and a recursion theory can be developed on it (α-recursion theory) by providing the generalized notions of α-recursively enumerable, α-recursive and α-finite. Takeuti [12] was the first to study recursive functions of ordinals, the subject owing its further development to Kripke [7], Platek [8], Kreisel [6], and Sacks [9].Infinitary logic on the other hand (i.e., the study of languages which allow expressions of infinite length) was quite extensively studied by Scott [11], Tarski, Kreisel, Karp [5] and others. Kreisel suggested in the late '50's that these languages (even which allows countable expressions but only finite quantification) were too large and that one should only allow expressions which are, in some generalized sense, finite. This made the application of generalized recursion theory to the logic of infinitary languages appear natural. In 1967 Barwise [1] was the first to present a complete formalization of the restriction of to an admissible fragment (A a countable admissible set) and to prove that completeness and compactness hold for it. [2] is an excellent reference for a detailed exposition of admissible languages.


1975 ◽  
Vol 20 (3) ◽  
pp. 301-304
Author(s):  
Torleiv Kløve

Following Craven (1965) we say that a set M of natural numbers is harmonically convergent if converges, and we call μ(M) the harmonic sum of M. (Craven defined these concepts for sequences rather than sets, but we found it convenient to work with sets.) Throughout this paper, lower case italics denote non-negative integers.


1979 ◽  
Vol 44 (3) ◽  
pp. 289-306 ◽  
Author(s):  
Victor Harnik

The central notion of this paper is that of a (conjunctive) game-sentence, i.e., a sentence of the formwhere the indices ki, ji range over given countable sets and the matrix conjuncts are, say, open -formulas. Such game sentences were first considered, independently, by Svenonius [19], Moschovakis [13]—[15] and Vaught [20]. Other references are [1], [3]—[5], [10]—[12]. The following normal form theorem was proved by Vaught (and, in less general forms, by his predecessors).Theorem 0.1. Let L = L0(R). For every -sentence ϕ there is an L0-game sentence Θ such that ⊨′ ∃Rϕ ↔ Θ.(A word about the notations: L0(R) denotes the language obtained from L0 by adding to it the sequence R of logical symbols which do not belong to L0; “⊨′α” means that α is true in all countable models.)0.1 can be restated as follows.Theorem 0.1′. For every-sentence ϕ there is an L0-game sentence Θ such that ⊨ϕ → Θ and for any-sentence ϕ if ⊨ϕ → ϕ and L′ ⋂ L ⊆ L0, then ⊨ Θ → ϕ.(We sketch the proof of the equivalence between 0.1 and 0.1′.0.1 implies 0.1′. This is obvious once we realize that game sentences and their negations satisfy the downward Löwenheim-Skolem theorem and hence, ⊨′α is equivalent to ⊨α whenever α is a boolean combination of and game sentences.


2011 ◽  
Vol 76 (3) ◽  
pp. 807-826 ◽  
Author(s):  
Barry Jay ◽  
Thomas Given-Wilson

AbstractTraditional combinatory logic uses combinators S and K to represent all Turing-computable functions on natural numbers, but there are Turing-computable functions on the combinators themselves that cannot be so represented, because they access internal structure in ways that S and K cannot. Much of this expressive power is captured by adding a factorisation combinator F. The resulting SF-calculus is structure complete, in that it supports all pattern-matching functions whose patterns are in normal form, including a function that decides structural equality of arbitrary normal forms. A general characterisation of the structure complete, confluent combinatory calculi is given along with some examples. These are able to represent all their Turing-computable functions whose domain is limited to normal forms. The combinator F can be typed using an existential type to represent internal type information.


1984 ◽  
Vol 49 (3) ◽  
pp. 818-829 ◽  
Author(s):  
J. P. Jones ◽  
Y. V. Matijasevič

The purpose of the present paper is to give a new, simple proof of the theorem of M. Davis, H. Putnam and J. Robinson [1961], which states that every recursively enumerable relation A(a1, …, an) is exponential diophantine, i.e. can be represented in the formwhere a1 …, an, x1, …, xm range over natural numbers and R and S are functions built up from these variables and natural number constants by the operations of addition, A + B, multiplication, AB, and exponentiation, AB. We refer to the variables a1,…,an as parameters and the variables x1 …, xm as unknowns.Historically, the Davis, Putnam and Robinson theorem was one of the important steps in the eventual solution of Hilbert's tenth problem by the second author [1970], who proved that the exponential relation, a = bc, is diophantine, and hence that the right side of (1) can be replaced by a polynomial equation. But this part will not be reproved here. Readers wishing to read about the proof of that are directed to the papers of Y. Matijasevič [1971a], M. Davis [1973], Y. Matijasevič and J. Robinson [1975] or C. Smoryński [1972]. We concern ourselves here for the most part only with exponential diophantine equations until §5 where we mention a few consequences for the class NP of sets computable in nondeterministic polynomial time.


1980 ◽  
Vol 45 (1) ◽  
pp. 103-120 ◽  
Author(s):  
J. V. Tucker

A natural way of studying the computability of an algebraic structure or process is to apply some of the theory of the recursive functions to the algebra under consideration through the manufacture of appropriate coordinate systems from the natural numbers. An algebraic structure A = (A; σ1,…, σk) is computable if it possesses a recursive coordinate system in the following precise sense: associated to A there is a pair (α, Ω) consisting of a recursive set of natural numbers Ω and a surjection α: Ω → A so that (i) the relation defined on Ω by n ≡α m iff α(n) = α(m) in A is recursive, and (ii) each of the operations of A may be effectively followed in Ω, that is, for each (say) r-ary operation σ on A there is an r argument recursive function on Ω which commutes the diagramwherein αr is r-fold α × … × α.This concept of a computable algebraic system is the independent technical idea of M.O.Rabin [18] and A.I.Mal'cev [14]. From these first papers one may learn of the strength and elegance of the general method of coordinatising; note-worthy for us is the fact that computability is a finiteness condition of algebra—an isomorphism invariant possessed of all finite algebraic systems—and that it serves to set upon an algebraic foundation the combinatorial idea that a system can be combinatorially presented and have effectively decidable term or word problem.


1958 ◽  
Vol 1 (3) ◽  
pp. 183-191 ◽  
Author(s):  
Hans Zassenhaus

Under the assumptions of case of theorem 1 we derive from (3.32) the matrix equationso that there corresponds the matrix B to the bilinear form4.1on the linear space4.2and fP,μ, is symmetric if ɛ = (-1)μ+1, anti-symmetric if ɛ = (-1)μ.The last statement remains true in the case a) if P is symmetric irreducible because in that case fP,μ is 0.


1958 ◽  
Vol 23 (2) ◽  
pp. 183-187 ◽  
Author(s):  
Martin Davis ◽  
Hilary Putnam

Hilbert's tenth problem is to find an algorithm for determining whether or not a diophantine equation possesses solutions. A diophantine predicate (of positive integers) is defined to be one of the formwhere P is a polynomial with integral coefficients (positive, negative, or zero). Previous work has considered the variables as ranging over nonnegative integers; but we shall find it more useful here to restrict the range to positive integers, no essential change being thereby introduced. It is clear that the recursive unsolvability of Hilbert's tenth problem would follow if one could show that some non-recursive predicate were diophantine. In particular, it would suffice to show that every recursively enumerable predicate is diophantine. Actually, it would suffice to prove far less.


Sign in / Sign up

Export Citation Format

Share Document