Arithmetical representation of recursively enumerable sets

1956 ◽  
Vol 21 (2) ◽  
pp. 162-186 ◽  
Author(s):  
Raphael M. Robinson

A set S of natural numbers is called recursively enumerable if there is a general recursive function F(x, y) such thatIn other words, S is the projection of a two-dimensional general recursive set. Actually, it is no restriction on S to assume that F(x, y) is primitive recursive. If S is not empty, it is the range of the primitive recursive functionwhere a is a fixed element of S. Using pairing functions, we see that any non-empty recursively enumerable set is also the range of a primitive recursive function of one variable.We use throughout the logical symbols ⋀ (and), ⋁ (or), → (if…then…), ↔ (if and only if), ∧ (for every), and ∨(there exists); negation does not occur explicitly. The variables range over the natural numbers, except as otherwise noted.Martin Davis has shown that every recursively enumerable set S of natural numbers can be represented in the formwhere P(y, b, w, x1 …, xλ) is a polynomial with integer coefficients. (Notice that this would not be correct if we replaced ≤ by <, since the right side of the equivalence would always be satisfied by b = 0.) Conversely, every set S represented by a formula of the above form is recursively enumerable. A basic unsolved problem is whether S can be defined using only existential quantifiers.

1972 ◽  
Vol 37 (3) ◽  
pp. 572-578 ◽  
Author(s):  
Raphael M. Robinson

A set D of natural numbers is called Diophantine if it can be defined in the formwhere P is a polynomial with integer coefficients. Recently, Ju. V. Matijasevič [2], [3] has shown that all recursively enumerable sets are Diophantine. From this, it follows that a bound for n may be given.We use throughout the logical symbols ∧ (and), ∨ (or), → (if … then …), ↔ (if and only if), ⋀ (for every), and ⋁ (there exists); negation does not occur explicitly. The variables range over the natural numbers 0,1,2,3, …, except as otherwise noted.It is the purpose of this paper to show that if we do not insist on prenex form, then every Diophantine set can be defined existentially by a formula in which not more than five existential quantifiers are nested. Besides existential quantifiers, only conjunctions are needed. By Matijasevič [2], [3], the representation extends to all recursively enumerable sets. Using this, we can find a bound for the number of conjuncts needed.Davis [1] proved that every recursively enumerable set of natural numbers can be represented in the formwhere P is a polynomial with integer coefficients. I showed in [5] that we can take λ = 4. (A minor error is corrected in an Appendix to this paper.) By the methods of the present paper, we can again obtain this result, and indeed in a stronger form, with the universal quantifier replaced by a conjunction.


1953 ◽  
Vol 18 (1) ◽  
pp. 30-32 ◽  
Author(s):  
William Craig

Let C be the closure of a recursively enumerable set B under some relation R. Suppose there is a primitive recursive relation Q, such that Q is a symmetric subrelation of R (i.e. if Q(m, n), then Q(n, m) and R(m, n)), and such that, for each m ϵ B, Q(m, n) for infinitely many n. Then there exists a primitive recursive set A, such that C is the closure under R of A. For proof, note that , where f is a primitive recursive function which enumerates B, has the required properties. For each m ϵ B, there is an n ϵ A, such that Q(m, n) and hence Q(n, m); therefore the closure of A under Q, and hence that under R, includes B. Conversely, since Q is a subrelation of R, A is included in C. Finally, that A is primitive recursive follows from [2] p. 180.This observation can be applied to many formal systems S, by letting R correspond to the relation of deducibility in S, so that R(m, n) if and only if m is the Gödel number of a formula of S, or of a sequence of formulas, from which, together with axioms of S, a formula with the Gödel number n can be obtained by applications of rules of inference of S.


1959 ◽  
Vol 55 (2) ◽  
pp. 145-148
Author(s):  
Alan Rose

It has been shown that every general recursive function is definable by application of the five schemata for primitive recursive functions together with the schemasubject to the condition that, for each n–tuple of natural numbers x1,…, xn there exists a natural number xn+1 such that


1954 ◽  
Vol 19 (4) ◽  
pp. 267-274 ◽  
Author(s):  
R. L. Goodstein

A primitive-recursive sequence of rational numbers sn is said to be primitive-recursively irrational, if there are primitive recursive functions n(k), i(p, q) > 0 and N(p, q) such that:1. (k)(n ≥ n(k) → ∣sn – sn(k)∣ < 2−k).2. (p)(q)(q > 0 & n ≥ N(p, q) → ∣sn ± p/q∣ > 1/i(p, q)).The object of the present note is to establish the primitive-recursive irrationality of a sequence which converges to π. In a previous paper we proved the primitive-recursive irrationality of the exponential series Σxn/n!, for all rational values of x, and showed that a primitive-(general-) recursively irrational sequence sn is strongly primitive-(general-)recursive convergent in any scale, where a recursive sequence sn is said to be strongly primitive-(general-)recursive convergent in the scale r (r ≥ 2), if there is a non-decreasing primitive-(general-) recursive function r(k) such that,where [x] is the greatest integer contained in x, i.e. [x] = i if i ≤ x < i + 1, [x] = —i if i ≤ —x < i+1, where i is a non-negative integer.A rational recursive sequence sn is said to be recursive convergent, if there is a recursive function n(k) such that.If a sequence sn is strongly recursive convergent in a scale r, then it is recursive convergent and its limit is the recursive real number where, for any k ≥ 0,.


1962 ◽  
Vol 27 (4) ◽  
pp. 383-390 ◽  
Author(s):  
S. Feferman ◽  
C. Spector

We deal in the following with certain theories S, by which we mean sets of sentences closed under logical deduction. The basic logic is understood to be the classical one, but we place no restriction on the orders of the variables to be used. However, we do assume that we can at least express certain notions from classical first-order number theory within these theories. In particular, there should correspond to each primitive recursive function ξ a formula φ(χ), where ‘x’ is a variable ranging over natural numbers, such that for each numeral ñ, φ(ñ) expresses in the language of S that ξ(η) = 0. Such formulas, when obtained say by the Gödel method of eliminating primitive recursive definitions in favor of arithmetical definitions in +. ·. are called PR-formulas (cf. [1] §2 (C)).


1966 ◽  
Vol 31 (3) ◽  
pp. 359-364 ◽  
Author(s):  
Robert A. Di Paola

Following [1] we write {n} for the nth recursively enumerable (re) set; that is, {n} = {x|VyT(n, x, y)}. By a “pair (T, α)” we mean a consistent re extension T of Peano arithmetic P and an RE-formula α which numerates the non-logical axioms of T in P [4]. Given a pair (T, α) and a particular formula which binumerates the Kleene T predicate in P, there can be defined a primitive recursive function Nα such that and which has the additional property that {Nα(Nα(n))} = ø for all n.


1982 ◽  
Vol 47 (3) ◽  
pp. 549-571 ◽  
Author(s):  
James P. Jones

In 1961 Martin Davis, Hilary Putnam and Julia Robinson [2] proved that every recursively enumerable set W is exponential diophantine, i.e. can be represented in the formHere P is a polynomial with integer coefficients and the variables range over positive integers.In 1970 Ju. V. Matijasevič used this result to establish the unsolvability of Hilbert's tenth problem. Matijasevič proved [11] that the exponential relation y = 2x is diophantine This together with [2] implies that every recursively enumerable set is diophantine, i.e. every r.e. set Wcan be represented in the formFrom this it follows that there does not exist an algorithm to decide solvability of diophantine equations. The nonexistence of such an algorithm follows immediately from the existence of r.e. nonrecursive sets.Now it is well known that the recursively enumerable sets W1, W2, W3, … can be enumerated in such a way that the binary relation x ∈ Wv is also recursively enumerable. Thus Matijasevič's theorem implies the existence of a diophantine equation U such that for all x and v,


1992 ◽  
Vol 57 (3) ◽  
pp. 844-863 ◽  
Author(s):  
Franco Montagna

In Parikh [71] it is shown that, if T is an r.e. consistent extension of Peano arithmetic PA, then, for each primitive recursive function g, there is a formula φ of PA such that(In the following, Proof T(z, φ) and Prov T(φ) denote the metalinguistic assertions that z codes a proof of φ in T and that φ is provable in T respectively, where ProofT(z, ┌φ┐) and ProvT(┌φ┐) are the formalizations of Proof T(z,φ) and ProvT(φ) respectively in the language of PA, ┌φ┐ denotes the Gödel number of φ and ┌φ┐ denotes the corresponding numeral. Also, for typographical reasons, subscripts will not be made boldface.) If g is a rapidly increasing function, we express (1) by saying that ProvT(┌φ┐) has a much shorter proof modulo g than φ. Parikh's result is based on the fact that a suitable formula A(x), roughly asserting that (1) holds with x in place of φ, has only provable fixed points. In de Jongh and Montagna [89], this situation is generalized and investigated in a modal context. There, a characterization is given of arithmetical formulas arising from modal formulas of a suitable modal language which have only provable fixed points, and Parikh's result is obtained as a particular case.


1984 ◽  
Vol 49 (3) ◽  
pp. 818-829 ◽  
Author(s):  
J. P. Jones ◽  
Y. V. Matijasevič

The purpose of the present paper is to give a new, simple proof of the theorem of M. Davis, H. Putnam and J. Robinson [1961], which states that every recursively enumerable relation A(a1, …, an) is exponential diophantine, i.e. can be represented in the formwhere a1 …, an, x1, …, xm range over natural numbers and R and S are functions built up from these variables and natural number constants by the operations of addition, A + B, multiplication, AB, and exponentiation, AB. We refer to the variables a1,…,an as parameters and the variables x1 …, xm as unknowns.Historically, the Davis, Putnam and Robinson theorem was one of the important steps in the eventual solution of Hilbert's tenth problem by the second author [1970], who proved that the exponential relation, a = bc, is diophantine, and hence that the right side of (1) can be replaced by a polynomial equation. But this part will not be reproved here. Readers wishing to read about the proof of that are directed to the papers of Y. Matijasevič [1971a], M. Davis [1973], Y. Matijasevič and J. Robinson [1975] or C. Smoryński [1972]. We concern ourselves here for the most part only with exponential diophantine equations until §5 where we mention a few consequences for the class NP of sets computable in nondeterministic polynomial time.


Author(s):  
D. B. Madan ◽  
R. W. Robinson

AbstractAn infinite subset of ω is monotone (1–1) if every recursive function is eventually monotone on it (eventually constant on it or eventually 1–1 on it). A recursively enumerable set is co-monotone (co-1–1) just if its complement is monotone (1–1). It is shown that no implications hold among the properties of being cohesive, monotone, or 1–1, though each implies r-cohesiveness and dense immunity. However it is also shown that co-monotone and co-1–1 are equivalent, that they are properly stronger than the conjunction of r-maximality and dense simplicity, and that they do not imply maximality.


Sign in / Sign up

Export Citation Format

Share Document