scholarly journals The interpretability logic of Peano arithmetic

1990 ◽  
Vol 55 (3) ◽  
pp. 1059-1089 ◽  
Author(s):  
Alessandro Berarducci

AbstractPA is Peano arithmetic. The formula InterpPA(α, β) is a formalization of the assertion that the theory PA + α interprets the theory PA + β (the variables α and β are intended to range over codes of sentences of PA). We extend Solovay's modal analysis of the formalized provability predicate of PA, PrPA(x), to the case of the formalized interpretability relation InterpPA(x, y). The relevant modal logic, in addition to the usual provability operator ‘□’, has a binary operator ‘⊳’ to be interpreted as the formalized interpretability relation. We give an axiomatization and a decision procedure for the class of those modal formulas that express valid interpretability principles (for every assignment of the atomic modal formulas to sentences of PA). Our results continue to hold if we replace the base theory PA with Zermelo-Fraenkel set theory, but not with Gödel-Bernays set theory. This sensitivity to the base theory shows that the language is quite expressive. Our proof uses in an essential way earlier work done by A. Visser, D. de Jongh, and F. Veltman on this problem.

1999 ◽  
Vol 64 (4) ◽  
pp. 1407-1425
Author(s):  
Claes Strannegård

AbstractWe investigate the modal logic of interpretability over Peano arithmetic. Our main result is a compactness theorem that extends the arithmetical completeness theorem for the interpretability logic ILMω. This extension concerns recursively enumerable sets of formulas of interpretability logic (rather than single formulas). As corollaries we obtain a uniform arithmetical completeness theorem for the interpretability logic ILM and a partial answer to a question of Orey from 1961. After some simplifications, we also obtain Shavrukov's embedding theorem for Magari algebras (a.k.a. diagonalizable algebras).


2017 ◽  
Vol 10 (3) ◽  
pp. 455-480 ◽  
Author(s):  
BARTOSZ WCISŁO ◽  
MATEUSZ ŁEŁYK

AbstractWe prove that the theory of the extensional compositional truth predicate for the language of arithmetic with Δ0-induction scheme for the truth predicate and the full arithmetical induction scheme is not conservative over Peano Arithmetic. In addition, we show that a slightly modified theory of truth actually proves the global reflection principle over the base theory.


2011 ◽  
Vol 20 (4) ◽  
pp. 747-756 ◽  
Author(s):  
J. Golinska-Pilarek ◽  
E. Munoz-Velasco ◽  
A. Mora-Bonilla

Author(s):  
John Stillwell

This chapter prepares the reader's mind for reverse mathematics. As its name suggests, reverse mathematics seeks not theorems but the right axioms to prove theorems already known. Reverse mathematics began as a technical field of mathematical logic, but its main ideas have precedents in the ancient field of geometry and the early twentieth-century field of set theory. In geometry, the parallel axiom is the right axiom to prove many theorems of Euclidean geometry, such as the Pythagorean theorem. Set theory offers a more modern example: base theory called ZF, a theorem that ZF cannot prove (the well-ordering theorem) and the “right axiom” for proving it—the axiom of choice. From these and similar examples one can guess at a base theory for analysis, and the “right axioms” for proving some of its well-known theorems.


2019 ◽  
Vol 29 (3) ◽  
pp. 331-348
Author(s):  
Matteo Pascucci

Abstract In their presentation of canonical models for normal systems of modal logic, Hughes and Cresswell observe that some of these models are based on a frame which can be also thought of as a collection of two or more isolated frames; they call such frames ‘non-cohesive’. The problem of checking whether the canonical model of a given system is cohesive is still rather unexplored and no general decision procedure is available. The main contribution of this article consists in introducing a method which is sufficient to show that canonical models of some relevant classes of normal monomodal and bimodal systems are always non-cohesive.


Studia Logica ◽  
1980 ◽  
Vol 39 (4) ◽  
pp. 335-345
Author(s):  
Herman Dishkant
Keyword(s):  

2005 ◽  
Vol 34 (1) ◽  
pp. 49-72 ◽  
Author(s):  
Domenico Cantone ◽  
Calogero G. Zarba ◽  
Rosa Ruggeri Cannata

1990 ◽  
Vol 55 (1) ◽  
pp. 194-206 ◽  
Author(s):  
Robert S. Lubarsky

The program of reverse mathematics has usually been to find which parts of set theory, often used as a base for other mathematics, are actually necessary for some particular mathematical theory. In recent years, Slaman, Groszek, et al, have given the approach a new twist. The priority arguments of recursion theory do not naturally or necessarily lead to a foundation involving any set theory; rather, Peano Arithmetic (PA) in the language of arithmetic suffices. From this point, the appropriate subsystems to consider are fragments of PA with limited induction. A theorem in this area would then have the form that certain induction axioms are independent of, necessary for, or even equivalent to a theorem about the Turing degrees. (See, for examples, [C], [GS], [M], [MS], and [SW].)As go the integers so go the ordinals. One motivation of α-recursion theory (recursion on admissible ordinals) is to generalize classical recursion theory. Since induction in arithmetic is meant to capture the well-foundedness of ω, the corresponding axiom in set theory is foundation. So reverse mathematics, even in the context of a set theory (admissibility), can be changed by the influence of reverse recursion theory. We ask not which set existence axioms, but which foundation axioms, are necessary for the theorems of α-recursion theory.When working in the theory KP – Foundation Schema (hereinafter called KP−), one should really not call it α-recursion theory, which refers implicitly to the full set of axioms KP. Just as the name β-recursion theory refers to what would be α-recursion theory only it includes also inadmissible ordinals, we call the subject of study here γ-recursion theory. This answers a question by Sacks and S. Friedman, “What is γ-recursion theory?”


Sign in / Sign up

Export Citation Format

Share Document