A note on subgroups of the automorphism group of a saturated model, and regular types

1989 ◽  
Vol 54 (3) ◽  
pp. 858-864 ◽  
Author(s):  
A. Pillay

AbstractLet M be a saturated model of a superstable theory and let G = Aut(M). We study subgroups H of G which contain G(A), A the algebraic closure of a finite set, generalizing results of Lascar [L] as well as giving an alternative characterization of the simple superstable theories of [P]. We also make some observations about good, locally modular regular types p in the context of p-simple types.

1985 ◽  
Vol 50 (4) ◽  
pp. 1020-1024 ◽  
Author(s):  
Anand Pillay ◽  
Charles Steinhorn

In this paper we prove that if T is the complete elementary diagram of a countable structure and is a theory as in the title, then Vaught's conjecture holds for T. This result is Theorem 7, below. In the process of establishing this proposition, in Theorem 3 we give a sufficient condition for a superstable theory having only countably many types without parameters to be ω-stable. Familiarity with the rudiments of stability theory, as presented in [3] and [4], will be supposed throughout. The notation used is, by now, standard.We begin by giving a new proof of a lemma due to J. Saffe in [6]. For T stable, recall that the multiplicity of a type p over a set A ⊆ ℳ ⊨ T is the cardinality of the collection of strong types over A extending p.Lemma 1 (Saffe). Let T be stable, A ⊆ ℳ ⊨ T. If t(b̄, A) has infinite multiplicity and t(c̄, A) has finite multiplicity, then t(b̄, A ∪ {c̄}) has infinite multiplicity.Proof. We suppose not and work for a contradiction. Let ‹b̄γ:γ ≤ α›, α ≥ ω, be a list of elements so that t(b̄γ, A) = t(b̄, A) for all γ ≤ α, and st(b̄γ, A) ≠ st(b̄δ, A) for γ ≠ δ. Furthermore, let c̄γ satisfy t(b̄γ∧c̄γ, A) = t(b̄ ∧ c̄, A) for each γ < α.Since t(c̄, A) has finite multiplicity, we may assume for all γ, δ < α. that st(c̄γ, A) = st(c̄δ, A). For each γ < α there is an automorphism fγ of the so-called “monster model” of T (a sufficiently large, saturated model of T) that preserves strong types over A and is such that f(c̄γ) = c̄0.


2017 ◽  
Vol 17 (01) ◽  
pp. 1750001 ◽  
Author(s):  
Itay Kaplan ◽  
Saharon Shelah ◽  
Pierre Simon

A theory [Formula: see text] is said to have exact saturation at a singular cardinal [Formula: see text] if it has a [Formula: see text]-saturated model which is not [Formula: see text]-saturated. We show, under some set-theoretic assumptions, that any simple theory has exact saturation. Also, an NIP theory has exact saturation if and only if it is not distal. This gives a new characterization of distality.


2010 ◽  
Vol 88 (1) ◽  
pp. 93-102 ◽  
Author(s):  
MARGARYTA MYRONYUK

AbstractLet X be a countable discrete abelian group with automorphism group Aut(X). Let ξ1 and ξ2 be independent X-valued random variables with distributions μ1 and μ2, respectively. Suppose that α1,α2,β1,β2∈Aut(X) and β1α−11±β2α−12∈Aut(X). Assuming that the conditional distribution of the linear form L2 given L1 is symmetric, where L2=β1ξ1+β2ξ2 and L1=α1ξ1+α2ξ2, we describe all possibilities for the μj. This is a group-theoretic analogue of Heyde’s characterization of Gaussian distributions on the real line.


2006 ◽  
Vol 71 (1) ◽  
pp. 203-216 ◽  
Author(s):  
Ermek S. Nurkhaidarov

In this paper we study the automorphism groups of countable arithmetically saturated models of Peano Arithmetic. The automorphism groups of such structures form a rich class of permutation groups. When studying the automorphism group of a model, one is interested to what extent a model is recoverable from its automorphism group. Kossak-Schmerl [12] show that if M is a countable, arithmetically saturated model of Peano Arithmetic, then Aut(M) codes SSy(M). Using that result they prove:Let M1. M2 be countable arithmetically saturated models of Peano Arithmetic such that Aut(M1) ≅ Aut(M2). Then SSy(M1) = SSy(M2).We show that if M is a countable arithmetically saturated of Peano Arithmetic, then Aut(M) can recognize if some maximal open subgroup is a stabilizer of a nonstandard element, which is smaller than any nonstandard definable element. That fact is used to show the main theorem:Let M1, M2be countable arithmetically saturated models of Peano Arithmetic such that Aut(M1) ≅ Aut(M2). Then for every n < ωHere RT2n is Infinite Ramsey's Theorem stating that every 2-coloring of [ω]n has an infinite homogeneous set. Theorem 0.2 shows that for models of a false arithmetic the converse of Kossak-Schmerl Theorem 0.1 is not true. Using the results of Reverse Mathematics we obtain the following corollary:There exist four countable arithmetically saturated models of Peano Arithmetic such that they have the same standard system but their automorphism groups are pairwise non-isomorphic.


According to Klein’s Erlanger programme, one may (indirectly) specify a geometry by giving a group action. Conversely, given a group action, one may ask for the corresponding geometry. Recently, I showed that the real asymptotic symmetry groups of general relativity (in any signature) have natural ‘projective’ classical actions on suitable ‘Radon transform’ spaces of affine 3-planes in flat 4-space. In this paper, I give concrete models for these groups and actions. Also, for the ‘atomic’ cases, I give geometric structures for the spaces of affine 3-planes for which the given actions are the automorphism group.


2017 ◽  
Vol 39 (06) ◽  
pp. 1637-1667 ◽  
Author(s):  
VILLE SALO

We show that on the four-symbol full shift, there is a finitely generated subgroup of the automorphism group whose action is (set-theoretically) transitive of all orders on the points of finite support, up to the necessary caveats due to shift-commutation. As a corollary, we obtain that there is a finite set of automorphisms whose centralizer is $\mathbb{Z}$ (the shift group), giving a finitary version of Ryan’s theorem (on the four-symbol full shift), suggesting an automorphism group invariant for mixing subshifts of finite type (SFTs). We show that any such set of automorphisms must generate an infinite group, and also show that there is also a group with this transitivity property that is a subgroup of the commutator subgroup and whose elements can be written as compositions of involutions. We ask many related questions and prove some easy transitivity results for the group of reversible Turing machines, topological full groups and Thompson’s  $V$ .


2012 ◽  
Vol 77 (4) ◽  
pp. 1057-1066 ◽  
Author(s):  
Özlem Beyarslan ◽  
Ehud Hrushovski

AbstractWe study the automorphism group of the algebraic closure of a substructureAof a pseudo-finite fieldF. We show that the behavior of this group, even whenAis large, depends essentially on the roots of unity inF. For almost all completions of the theory of pseudofinite fields, we show that overA, algebraic closure agrees with definable closure, as soon asAcontains the relative algebraic closure of the prime field.


2018 ◽  
Vol 17 (07) ◽  
pp. 1850126 ◽  
Author(s):  
Hailin Liu ◽  
Lei Wang

A Cayley graph [Formula: see text] is called arc-transitive if its automorphism group [Formula: see text] is transitive on the set of arcs in [Formula: see text]. In this paper, we give a characterization of cubic arc-transitive Cayley graphs on a class of Frobenius groups.


Sign in / Sign up

Export Citation Format

Share Document