On solvable centerless groups of Morley rank 3

1993 ◽  
Vol 58 (2) ◽  
pp. 546-556
Author(s):  
Mark Kelly Davis ◽  
Ali Nesin

We know quite a lot about the general structure of ω-stable solvable centerless groups of finite Morley rank. Abelian groups of finite Morley rank are also well-understood. By comparison, nonabelian nilpotent groups are a mystery except for the following general results:• An ω1-categorical torsion-free nonabelian nilpotent group is an algebraic group over an algebraically closed field of characteristic 0 [Z3].• A nilpotent group of finite Morley rank is the central product of a definable subgroup of finite exponent and of a definable divisible subgroup [N3].• A divisible nilpotent group of finite Morley rank is the direct product of its torsion part (which is central) and of a torsion-free subgroup [N3].However, we do not understand nilpotent groups of bounded exponent. It seems that the classification of nilpotent (but nonabelian) p-groups of finite Morley rank is impossible. Even the nilpotent groups of Morley rank 2 contain insurmountable difficulties [C], [T] . At first glance, this may seem to be an obstacle to proving the Cherlin-Zil'ber conjecture (“simple groups of finite Morley rank are algebraic groups”). Our purpose in this article is to show that if such a group is a definable subgroup of a nonnilpotent group, then it is possible to obtain a classification within the boundaries of our present knowledge. In this respect, our article may be considered as a relief to those who are trying to classify simple groups of finite Morley rank.Before explicitly stating our result, we need the following definition.

1991 ◽  
Vol 56 (2) ◽  
pp. 694-699 ◽  
Author(s):  
Ali Nesin

Let π be a set of primes. We will call a group π-separated if it can be decomposed as a central product of a π-torsion group of bounded exponent and a π-radicable group. It is easy to see that an abelian π-separated group can in fact be decomposed as a direct product of bounded and π-radicable factors (Lemma 1.1 below). A poly-π-separated group is one which can be obtained from π-separated groups by forming a finite series of group extensions. We will show here:Theorem 1. Every poly-π-separated nilpotent group is π-separated.The need for such a result arises in model theory in the case that π is the set of all primes, in which case we refer simply to separated and poly-separated groups. In connection with the conjecture that ω-stable simple groups are algebraic, it is useful to have a structure theory for solvable ω-stable groups analogous to the theory available in the algebraic case over algebraically closed fields. In particular the structure of nilpotent ω-stable groups is of interest, for example in connection with the known result [Zi1], [Ne] that the derived subgroup of a connected solvable ω-stable group of finite Morley rank is nilpotent.As a model-theoretic application of Theorem 1 we obtain:Theorem 2. If G is an ω-stable nilpotent group then G may be decomposed as a central product B * D with B and D 0-definable subgroups, B torsion of bounded exponent, and D radicable. In particular, B and D are ω-stable. Furthermore, ω · rk(B ∩ D) ≤ rk D.Corollary. The ω-stable groups of finite Morley rank are exactly the central products B * D of ω-stable nilpotent groups of finite Morley rank with B torsion of bounded exponent, D radicable, and B ∩ D finite.In addition to the purely algebraic Theorem 1, these results depend on Macintyre's characterization [Mac] of the ω-stable abelian groups as exactly the separated ones.


1995 ◽  
Vol 117 (3) ◽  
pp. 431-438 ◽  
Author(s):  
Charles Cassidy ◽  
Caroline Lajoie

AbstractIn this paper, we characterize the genus of an arbitrary torsion-free finitely generated nilpotent group of class two and of Hirsch length six by means of a finite number of arithmetical invariants. An algorithm which permits the enumeration of all possible genera that can occur under the conditions above is also given.


2004 ◽  
Vol 276 (1) ◽  
pp. 13-79 ◽  
Author(s):  
Gregory Cherlin ◽  
Eric Jaligot

1955 ◽  
Vol 7 ◽  
pp. 169-187 ◽  
Author(s):  
S. A. Jennings

Introduction. In this paper we study the (discrete) group ring Γ of a finitely generated torsion free nilpotent group over a field of characteristic zero. We show that if Δ is the ideal of Γ spanned by all elements of the form G − 1, where G ∈ , thenand the only element belonging to Δw for all w is the zero element (cf. (4.3) below).


2018 ◽  
Vol 2018 (738) ◽  
pp. 281-298 ◽  
Author(s):  
Caleb Eckhardt ◽  
Paul McKenney

Abstract We show that group C*-algebras of finitely generated, nilpotent groups have finite nuclear dimension. It then follows, from a string of deep results, that the C*-algebra A generated by an irreducible representation of such a group has decomposition rank at most 3. If, in addition, A satisfies the universal coefficient theorem, another string of deep results shows it is classifiable by its ordered K-theory and is approximately subhomogeneous. We observe that all C*-algebras generated by faithful irreducible representations of finitely generated, torsion free nilpotent groups satisfy the universal coefficient theorem.


2016 ◽  
Vol 16 (01) ◽  
pp. 1650001 ◽  
Author(s):  
Franck Benoist ◽  
Elisabeth Bouscaren ◽  
Anand Pillay

We give a reduction of the function field Mordell–Lang conjecture to the function field Manin–Mumford conjecture, for abelian varieties, in all characteristics, via model theory, but avoiding recourse to the dichotomy theorems for (generalized) Zariski geometries. Additional ingredients include the “Theorem of the Kernel”, and a result of Wagner on commutative groups of finite Morley rank without proper infinite definable subgroups. In positive characteristic, where the main interest lies, there is one more crucial ingredient: “quantifier-elimination” for the corresponding [Formula: see text] where [Formula: see text] is a saturated separably closed field.


2007 ◽  
Vol 314 (2) ◽  
pp. 581-612 ◽  
Author(s):  
Jeffrey Burdges ◽  
Gregory Cherlin ◽  
Eric Jaligot

Sign in / Sign up

Export Citation Format

Share Document