Arnold W. Miller. Descriptive set theory and forcing. How to prove theorems about Borel sets the hard way. Lecture notes in logic, no. 4. Springer, Berlin, Heidelberg, New York, etc., 1995, ii + 130 pp.

1997 ◽  
Vol 62 (1) ◽  
pp. 320-321
Author(s):  
Tomek Bartoszyński
1990 ◽  
Vol 55 (2) ◽  
pp. 604-614 ◽  
Author(s):  
Boško Živaljević

A remarkable result of Henson and Ross [HR] states that if a function whose graph is Souslin in the product of two hyperfinite sets in an ℵ1 saturated nonstandard universe possesses a certain nice property (capacity) then there exists an internal subfunction of the given one possessing the same property. In particular, they prove that every 1-1 Souslin function preserves any internal counting measure, and show that every two internal sets A and B with ∣A∣/∣B∣ ≈ 1 are Borel bijective. As a supplement to the last-mentioned result of Henson and Ross, Keisler, Kunen, Miller and Leth showed [KKML] that two internal sets A and B are bijective by a countably determined bijection if and only if ∣A∣/∣B∣ is finite and not infinitesimal.In this paper we first show that injective Borel functions map Borel sets into Borel sets, a fact well known in classical descriptive set theory. Then, we extend the result of Henson and Ross concerning the Borel bijectivity of internal sets whose quotient of cardinalities is infinitely closed to 1. We prove that two Borel sets, to which we may assign a counting measure not equal to 0 or ∞, are Borel bijective if and only if they have the same counting measure ≠0, ∞. This, together with the similar characterization for Souslin and measurable countably determined sets, extends the above-mentioned results from [HR] and [KKML].


1999 ◽  
Vol 5 (2) ◽  
pp. 161-174 ◽  
Author(s):  
Alexander S. Kechris

§1. I will start with a quick definition of descriptive set theory: It is the study of the structure of definable sets and functions in separable completely metrizable spaces. Such spaces are usually called Polish spaces. Typical examples are ℝn, ℂn, (separable) Hilbert space and more generally all separable Banach spaces, the Cantor space 2ℕ, the Baire space ℕℕ, the infinite symmetric group S∞, the unitary group (of the Hilbert space), the group of measure preserving transformations of the unit interval, etc.In this theory sets are classified in hierarchies according to the complexity of their definitions and the structure of sets in each level of these hierarchies is systematically analyzed. In the beginning we have the Borel sets in Polish spaces, obtained by starting with the open sets and closing under the operations of complementation and countable unions, and the corresponding Borel hierarchy ( sets). After this come the projective sets, obtained by starting with the Borel sets and closing under the operations of complementation and projection, and the corresponding projective hierarchy ( sets).There are also transfinite extensions of the projective hierarchy and even much more complex definable sets studied in descriptive set theory, but I will restrict myself here to Borel and projective sets, in fact just those at the first level of the projective hierarchy, i.e., the Borel (), analytic () and coanalytic () sets.


1996 ◽  
Vol 2 (1) ◽  
pp. 94-107 ◽  
Author(s):  
Greg Hjorth

§0. Preface. There has been an expectation that the endgame of the more tenacious problems raised by the Los Angeles ‘cabal’ school of descriptive set theory in the 1970's should ultimately be played out with the use of inner model theory. Questions phrased in the language of descriptive set theory, where both the conclusions and the assumptions are couched in terms that only mention simply definable sets of reals, and which have proved resistant to purely descriptive set theoretic arguments, may at last find their solution through the connection between determinacy and large cardinals.Perhaps the most striking example was given by [24], where the core model theory was used to analyze the structure of HOD and then show that all regular cardinals below ΘL(ℝ) are measurable. John Steel's analysis also settled a number of structural questions regarding HODL(ℝ), such as GCH.Another illustration is provided by [21]. There an application of large cardinals and inner model theory is used to generalize the Harrington-Martin theorem that determinacy implies )determinacy.However, it is harder to find examples of theorems regarding the structure of the projective sets whose only known proof from determinacy assumptions uses the link between determinacy and large cardinals. We may equivalently ask whether there are second order statements of number theory that cannot be proved under PD–the axiom of projective determinacy–without appealing to the large cardinal consequences of the PD, such as the existence of certain kinds of inner models that contain given types of large cardinals.


Sign in / Sign up

Export Citation Format

Share Document