Degree theoretic definitions of the low2 recursively enumerable sets

1995 ◽  
Vol 60 (3) ◽  
pp. 727-756 ◽  
Author(s):  
Rod Downey ◽  
Richard A. Shore

The primary relation studied in recursion theory is that of relative complexity: A set or function A (of natural numbers) is reducible to one B if, given access to information about B, we can compute A. The primary reducibility is that of Turing, A ≤TB, where arbitrary (Turing) machines, φe, can be used; access to information about (the oracle) B is unlimited and the lengths of computations are potentially unbounded. Many other interesting reducibilities result from restricitng one or more of these facets of the procedure. Thus, for example, the strongest notion considered is one-one reducibility on sets: A ≤1B iff there is a one-one recursive (= effective) function f such that x Є A ⇔ f(x) Є B. Many-one (≤m) reducibility simply allows f to be many-one. Other intermediate reducibilities include truth-table (≤tt) and weak truth-table (≤wtt). The latter imposes a recursive bound f(x) on the information about B that can be used to compute A(x). The former also bounds the length of computations by requiring that the computation of A(x) from B halt in at most f(x) many steps.Each such reducibility r defines a notion of degree, degr(A) = {B : A ≤rB ∧ B ≤rA}, and a corresponding structure of the r-degrees ordered by r-reducibility. (We typically denote the degree of A by a.) A major theme in recursion theory has been the investigation of the relation between a set's place in these orderings (the algebraic properties of its degree) and other algorithmic, set-theoretic or definability type notions of complexity. Important examples of such other notions include rates of growth of functions, the types of approximation procedures which converge to the given function or set and the (syntactic) complexity of defining the set (or function) in arithmetic or analysis.

1972 ◽  
Vol 37 (4) ◽  
pp. 677-682 ◽  
Author(s):  
George Metakides

Let α be a limit ordinal with the property that any “recursive” function whose domain is a proper initial segment of α has its range bounded by α. α is then called admissible (in a sense to be made precise later) and a recursion theory can be developed on it (α-recursion theory) by providing the generalized notions of α-recursively enumerable, α-recursive and α-finite. Takeuti [12] was the first to study recursive functions of ordinals, the subject owing its further development to Kripke [7], Platek [8], Kreisel [6], and Sacks [9].Infinitary logic on the other hand (i.e., the study of languages which allow expressions of infinite length) was quite extensively studied by Scott [11], Tarski, Kreisel, Karp [5] and others. Kreisel suggested in the late '50's that these languages (even which allows countable expressions but only finite quantification) were too large and that one should only allow expressions which are, in some generalized sense, finite. This made the application of generalized recursion theory to the logic of infinitary languages appear natural. In 1967 Barwise [1] was the first to present a complete formalization of the restriction of to an admissible fragment (A a countable admissible set) and to prove that completeness and compactness hold for it. [2] is an excellent reference for a detailed exposition of admissible languages.


1992 ◽  
Vol 57 (3) ◽  
pp. 864-874 ◽  
Author(s):  
Klaus Ambos-Spies ◽  
André Nies ◽  
Richard A. Shore

AbstractWe show that the partial order of -sets under inclusion is elementarily definable with parameters in the semilattice of r.e. wtt-degrees. Using a result of E. Herrmann, we can deduce that this semilattice has an undecidable theory, thereby solving an open problem of P. Odifreddi.


1993 ◽  
Vol 18 (1) ◽  
pp. 65-92
Author(s):  
Iain A. Stewart

We consider three sub-logics of the logic (±HP)*[FOs] and show that these sub-logics capture the complexity classes obtained by considering logspace deterministic oracle Turing machines with oracles in NP where the number of oracle calls is unrestricted and constant, respectively; that is, the classes LNP and LNP[O(1)]. We conclude that if certain logics are of the same expressibility then the Polynomial Hierarchy collapses. We also exhibit some new complete problems for the complexity class LNP via projection translations (the first to be discovered: projection translations are extremely weak logical reductions between problems) and characterize the complexity class LNP[O(1)] as the closure of NP under a new, extremely strict truth-table reduction (which we introduce in this paper).


2020 ◽  
Author(s):  
Augusto Modanese

Abstract The expanding cellular automata (XCA) variant of cellular automata is investigated and characterized from a complexity-theoretical standpoint. An XCA is a one-dimensional cellular automaton which can dynamically create new cells between existing ones. The respective polynomial-time complexity class is shown to coincide with $${\le _{tt}^p}(\textsf {NP})$$ ≤ tt p ( NP ) , that is, the class of decision problems polynomial-time truth-table reducible to problems in $$\textsf {NP}$$ NP . An alternative characterization based on a variant of non-deterministic Turing machines is also given. In addition, corollaries on select XCA variants are proven: XCAs with multiple accept and reject states are shown to be polynomial-time equivalent to the original XCA model. Finally, XCAs with alternative acceptance conditions are considered and classified in terms of $${\le _{tt}^p}(\textsf {NP})$$ ≤ tt p ( NP ) and the Turing machine polynomial-time class $$\textsf {P}$$ P .


1976 ◽  
Vol 41 (3) ◽  
pp. 681-694
Author(s):  
Anne Leggett ◽  
Richard A. Shore

One general program of α-recursion theory is to determine as much as possible of the lattice structure of (α), the lattice of α-r.e. sets under inclusion. It is hoped that structure results will shed some light on whether or not the theory of (α) is decidable with respect to a suitable language for lattice theory. Fix such a language ℒ.Many of the basic results about the lattice structure involve various sorts of simple α-r.e. sets (we use definitions which are definable in ℒ over (α)). It is easy to see that simple sets exist for all admissible α. Chong and Lerman [1] have found some necessary and some sufficient conditions for the existence of hhsimple α-r.e. sets, although a complete determination of these conditions has not yet been made. Lerman and Simpson [9] have obtained some partial results concerning r-maximal α-r.e. sets. Lerman [6] has shown that maximal α-r.e. sets exist iff a is a certain sort of constructibly countable ordinal. Lerman [5] has also investigated the congruence relations, filters, and ideals of (α). Here various sorts of simple sets have also proved to be vital tools. The importance of simple α-r.e. sets to the study of the lattice structure of (α) is hence obvious.Lerman [6, Q22] has posed the following problem: Find an admissible α for which all simple α-r.e. sets have the same 1-type with respect to the language ℒ. The structure of (α) for such an α would be much less complicated than that of (ω). Lerman [7] showed that such an α could not be a regular cardinal of L. We show that there is no such admissible α.


2016 ◽  
Vol 73 (1) ◽  
pp. 1-15 ◽  
Author(s):  
Juan A. Nido Valencia ◽  
Julio E. Solís Daun ◽  
Luis M. Villegas Silva

1976 ◽  
Vol 41 (2) ◽  
pp. 513-530 ◽  
Author(s):  
Robert I. Soare

One of the most important and distinctive tools in recursion theory has been the priority method whereby a recursively enumerable (r.e.) set A is constructed by stages to satisfy a sequence of conditions {Rn}n∈ω called requirements. If n < m, requirement Rn is given priority over Rm and action taken for Rm at some stage s may at a later stage t > s be undone for the sake of Rn thereby injuring Rm at stage t. The first priority method was invented by Friedberg [2] and Muchnik [11] to solve Post's problem and is characterized by the fact that each requirement is injured at most finitely often.Shoenfield [20, Lemma 1], and then independently Sacks [17] and Yates [25] invented a much more powerful method in which a requirement may be injured infinitely often, and the method was applied and refined by Sacks [15], [16], [17], [18], [19] and Yates [25], [26] to obtain many deep results on r.e. sets and their degrees. In spite of numerous simplifications and variations this infinite injury method has never been as well understood as the finite injury method because of its apparently greater complexity.The purpose of this paper is to reduce the Sacks method to two easily understood lemmas whose proofs are very similar to the finite injury case. Using these lemmas we can derive all the results of Sacks on r.e. degrees, and some by Yates and Robinson as well, in a manner accessible to the nonspecialist. The heart of the method is an ingenious observation of Lachlan [7] which is combined with a further simplification of our own.


Sign in / Sign up

Export Citation Format

Share Document