Toward a constructive theory of unbounded linear operators

2000 ◽  
Vol 65 (1) ◽  
pp. 357-370 ◽  
Author(s):  
Feng Ye

AbstractWe show that the following results in the classical theory of unbounded linear operators on Hilbert spaces can be proved within the framework of Bishop's constructive mathematics: the Kato-Rellich theorem, the spectral theorem. Stone's theorem, and the self-adjointness of the most common quantum mechanical operators, including the Hamiltonians of electro-magnetic fields with some general forms of potentials.


Author(s):  
D. E. Edmunds ◽  
W. D. Evans

This chapter is concerned with closable and closed operators in Hilbert spaces, especially with the special classes of symmetric, J-symmetric, accretive and sectorial operators. The Stone–von Neumann theory of extensions of symmetric operators is treated as a special case of results for compatible adjoint pairs of closed operators. Also discussed in detail is the stability of closedness and self-adjointness under perturbations. The abstract results are applied to operators defined by second-order differential expressions, and Sims’ generalization of the Weyl limit-point, limit-circle characterization for symmetric expressions to J-symmetric expressions is proved.



Author(s):  
Jean-Pierre Antoine ◽  
Atsushi Inoue ◽  
Camillo Trapani


Author(s):  
J. A. Conejero ◽  
F. Martínez-Giménez ◽  
A. Peris ◽  
F. Rodenas

AbstractWe provide a complete characterization of the possible sets of periods for Devaney chaotic linear operators on Hilbert spaces. As a consequence, we also derive this characterization for linearizable maps on Banach spaces.



2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Robert Konik ◽  
Márton Lájer ◽  
Giuseppe Mussardo

Abstract One of the most striking but mysterious properties of the sinh-Gordon model (ShG) is the b → 1/b self-duality of its S-matrix, of which there is no trace in its Lagrangian formulation. Here b is the coupling appearing in the model’s eponymous hyperbolic cosine present in its Lagrangian, cosh(bϕ). In this paper we develop truncated spectrum methods (TSMs) for studying the sinh-Gordon model at a finite volume as we vary the coupling constant. We obtain the expected results for b ≪ 1 and intermediate values of b, but as the self-dual point b = 1 is approached, the basic application of the TSM to the ShG breaks down. We find that the TSM gives results with a strong cutoff Ec dependence, which disappears according only to a very slow power law in Ec. Standard renormalization group strategies — whether they be numerical or analytic — also fail to improve upon matters here. We thus explore three strategies to address the basic limitations of the TSM in the vicinity of b = 1. In the first, we focus on the small-volume spectrum. We attempt to understand how much of the physics of the ShG is encoded in the zero mode part of its Hamiltonian, in essence how ‘quantum mechanical’ vs ‘quantum field theoretic’ the problem is. In the second, we identify the divergencies present in perturbation theory and perform their resummation using a supra-Borel approximate. In the third approach, we use the exact form factors of the model to treat the ShG at one value of b as a perturbation of a ShG at a different coupling. In the light of this work, we argue that the strong coupling phase b > 1 of the Lagrangian formulation of model may be different from what is naïvely inferred from its S-matrix. In particular, we present an argument that the theory is massless for b > 1.



Sign in / Sign up

Export Citation Format

Share Document