Gaisi Takeuti. Construction of the set theory from the theory of ordinal numbers. Journal of the Mathematical Society of Japan, vol. 6 (1954), pp. 196–220. Errata, ibid., vol. 7 (1955), p. 408.

1959 ◽  
Vol 24 (1) ◽  
pp. 66-67
Author(s):  
Kurt Schütte
1973 ◽  
Vol 38 (1) ◽  
pp. 59-68 ◽  
Author(s):  
C. Ward Henson

In this paper we develop certain methods of proof in Quine's set theory NF which have no counterparts elsewhere. These ideas were first used by Specker [5] in his disproof of the Axiom of Choice in NF. They depend on the properties of two related operations, T(n) on cardinal numbers and U(α) on ordinal numbers, which are defined by the equationsfor each set x and well ordering R. (Here and below we use Rosser's notation [3].) The definitions insure that the formulas T(x) = y and U(x) = y are stratified when y is assigned a type one higher than x. The importance of T and U stems from the following facts: (i) each of T and U is a 1-1, order preserving operation from its domain onto a proper initial section of its domain; (ii) Tand U commute with most of the standard operations on cardinal and ordinal numbers.These basic facts are discussed in §1. In §2 we prove in NF that the exponential function 2n is not 1-1. Indeed, there exist cardinal numbers m and n which satisfyIn §3 we prove the following technical result, which has many important applications. Suppose f is an increasing function from an initial segment S of the set NO of ordinal numbers into NO and that f commutes with U.


1965 ◽  
Vol 30 (3) ◽  
pp. 295-317 ◽  
Author(s):  
Gaisi Takeuti

Although Peano's arithmetic can be developed in set theories, it can also be developed independently. This is also true for the theory of ordinal numbers. The author formalized the theory of ordinal numbers in logical systems GLC (in [2]) and FLC (in [3]). These logical systems which contain the concept of ‘arbitrary predicates’ or ‘arbitrary functions’ are of higher order than the first order predicate calculus with equality. In this paper we shall develop the theory of ordinal numbers in the first order predicate calculus with equality as an extension of Peano's arithmetic. This theory will prove to be easy to manage and fairly powerful in the following sense: If A is a sentence of the theory of ordinal numbers, then A is a theorem of our system if and only if the natural translation of A in set theory is a theorem of Zermelo-Fraenkel set theory. It will be treated as a natural extension of Peano's arithmetic. The latter consists of axiom schemata of primitive recursive functions and mathematical induction, while the theory of ordinal numbers consists of axiom schemata of primitive recursive functions of ordinal numbers (cf. [5]), of transfinite induction, of replacement and of cardinals. The latter three axiom schemata can be considered as extensions of mathematical induction.In the theory of ordinal numbers thus developed, we shall construct a model of Zermelo-Fraenkel's set theory by following Gödel's construction in [1]. Our intention is as follows: We shall define a relation α ∈ β as a primitive recursive predicate, which corresponds to F′ α ε F′ β in [1]; Gödel defined the constructible model Δ using the primitive notion ε in the universe or, in other words, using the whole set theory.


Sign in / Sign up

Export Citation Format

Share Document