simple theories
Recently Published Documents


TOTAL DOCUMENTS

120
(FIVE YEARS 10)

H-INDEX

17
(FIVE YEARS 1)

2021 ◽  
Vol 392 ◽  
pp. 108036
Author(s):  
M. Malliaris ◽  
S. Shelah
Keyword(s):  

2021 ◽  
Author(s):  
M. Malliaris ◽  
S. Shelah

2021 ◽  
pp. 1-20
Author(s):  
A. Kshitij ◽  
S.A. Prince ◽  
J.L. Stollery ◽  
F. de la P. Ricón

ABSTRACT The addition of wedge-like fairings onto the side of missiles and space launch vehicles, to shield devices such as cameras and reaction jet nozzles, creates additional drag, particularly when in supersonic and hypersonic freestream flow. An experimental and computational study was performed to obtain aerodynamic data on simple representative configurations to test the accuracy of simple theories for the drag increment due to these types of fairings. A semi-empirical method to estimate drag on wedge-shaped projections is presented, which may be used by missile designers to provide predictions of the drag increment due to wedge-like fairings. The method is shown to be valid where the wedge width is much smaller than body diameter, and across the Mach number range 4–8.2 but is likely to be valid for higher Mach numbers. Drag coefficient is found to increase with increasing wedge angle and reducing wedge slenderness, although increasing slenderness tends to increase skin friction drag.


2021 ◽  
pp. 2150016
Author(s):  
Christian d’Elbée

Consider the expansion [Formula: see text] of a theory [Formula: see text] by a predicate for a submodel of a reduct [Formula: see text] of [Formula: see text]. We present a setup in which this expansion admits a model companion [Formula: see text]. We show that some of the nice features of the theory [Formula: see text] transfer to [Formula: see text]. In particular, we study conditions for which this expansion preserves the [Formula: see text]-ness, the simplicity or the stability of the starting theory [Formula: see text]. We give concrete examples of new [Formula: see text] not simple theories obtained by this process, among them the expansion of a perfect [Formula: see text]-free PAC field of positive characteristic by generic additive subgroups, and the expansion of an algebraically closed field of any characteristic by a generic multiplicative subgroup.


2020 ◽  
Author(s):  
Tim Gould

Recent theory developments in ensemble density functional theory (EDFT) promise to bring decades of work for ground-states to the practical resolution of excited-states - provided newly-discovered "density-driven correlations" can be dealt with and adequate effective potentials can be found. This Letter introduces simple theories for both; and shows that EDFT using these theories outperforms ΔSCF DFT and time-dependent DFT for low-lying gaps in most of the small atoms and molecules tested, even when all use the same density functional approximations. It thus establishes EDFT as a promising tool for low-cost studies of excited states; and provides a clear route to practical EDFT implementation of arbitrary functional approximations.<br><br>


2020 ◽  
Author(s):  
Tim Gould

Recent theory developments in ensemble density functional theory (EDFT) promise to bring decades of work for ground-states to the practical resolution of excited-states - provided newly-discovered "density-driven correlations" can be dealt with and adequate effective potentials can be found. This Letter introduces simple theories for both; and shows that EDFT using these theories outperforms ΔSCF DFT and time-dependent DFT for low-lying gaps in most of the small atoms and molecules tested, even when all use the same density functional approximations. It thus establishes EDFT as a promising tool for low-cost studies of excited states; and provides a clear route to practical EDFT implementation of arbitrary functional approximations.<br><br>


2020 ◽  
Author(s):  
Tim Gould

Recent theory developments in ensemble density functional theory (EDFT) promise to bring decades of work for ground-states to the practical resolution of excited-states - provided newly-discovered "density-driven correlations" can be dealt with and adequate effective potentials can be found. This Letter introduces simple theories for both; and shows that EDFT using these theories outperforms ΔSCF DFT and time-dependent DFT for low-lying gaps in most of the small atoms and molecules tested, even when all use the same density functional approximations. It thus establishes EDFT as a promising tool for low-cost studies of excited states; and provides a clear route to practical EDFT implementation of arbitrary functional approximations.<br><br>


Energies ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 4190 ◽  
Author(s):  
Eric Chaidez ◽  
Shankar P. Bhattacharyya ◽  
Adonios N. Karpetis

The Hyperloop system offers the promise of transportation over distances of 1000 km or more, at speeds approaching the speed of sound, without the complexity and cost of high-speed trains or commercial aviation. Two crucial technological issues must be addressed before a practical system can become operational: air resistance, and contact/levitation friction must both be minimized in order to minimize power requirements and system size. The present work addresses the second issue by estimating the power requirements for each of the three major modes of Hyperloop operation: rolling wheels, sliding air bearings, and levitating magnetic suspension systems. The salient features of each approach are examined using simple theories and a comparison is made of power consumption necessary in each case.


Sign in / Sign up

Export Citation Format

Share Document