Order statistics of partial sums of mutually independent random variables

1975 ◽  
Vol 12 (2) ◽  
pp. 390-395 ◽  
Author(s):  
Felix Pollaczek

Herein is exposed a simplified analytic proof of formulas for the characteristic functions of ordered partial sums of mutually independent identically distributed random variables. This problem which we had raised and solved in 1952 by another method, has since been treated by several authors (see Wendel [6]), and recently by de Smit [4], who made use of a kind of Wiener-Hopf decomposition†. On the contrary our present as well as our previous proof essentially uses the explicit solution of a certain singular integral equation in a complex domain.

1975 ◽  
Vol 12 (02) ◽  
pp. 390-395 ◽  
Author(s):  
Felix Pollaczek

Herein is exposed a simplified analytic proof of formulas for the characteristic functions of ordered partial sums of mutually independent identically distributed random variables. This problem which we had raised and solved in 1952 by another method, has since been treated by several authors (see Wendel [6]), and recently by de Smit [4], who made use of a kind of Wiener-Hopf decomposition†. On the contrary our present as well as our previous proof essentially uses the explicit solution of a certain singular integral equation in a complex domain.


1971 ◽  
Vol 3 (02) ◽  
pp. 404-425
Author(s):  
Howard G. Tucker

The aim of this study is an investigation of the joint limiting distribution of the sequence of partial sums of the positive parts and negative parts of a sequence of independent identically distributed random variables. In particular, let {Xn} be a sequence of independent identically distributed random variables with common distribution functionF, assumeFis in the domain of attraction of a stable distribution with characteristic exponent α, 0 < α ≦ 2, and let {Bn} be normalizing coefficients forF. Let us denoteXn+=XnI[Xn> 0]andXn−= −XnI[Xn<0], so thatXn=Xn+-Xn−. LetF+andF−denote the distribution functions ofX1+andX1−respectively, and letSn(+)=X1++ · · · +Xn+,Sn(-)=X1−+ · · · +Xn−. The problem considered here is to find under what conditions there exist sequences of real numbers {an} and {bn} such that the joint distribution of (Bn-1Sn(+)+an,Bn-1Sn(-)+bn) converges to that of two independent random variables (U, V). As might be expected, different results are obtained when α < 2 and when α = 2. When α < 2, there always exist such sequences so that the above is true, and in this case bothUandVare stable with characteristic exponent a, or one has such a stable distribution and the other is constant. When α = 2, and if 0 < ∫x2dF(x) < ∞, then there always exist such sequences such that the above convergence takes place; bothUandVare normal (possibly one is a constant), and if neither is a constant, thenUandVarenotindependent. If α = 2 and ∫x2dF(x) = ∞, then at least one ofF+,F−is in the domain of partial attraction of the normal distribution, and a modified statement on the independence ofUandVholds. Various specialized results are obtained for α = 2.


1971 ◽  
Vol 3 (2) ◽  
pp. 404-425 ◽  
Author(s):  
Howard G. Tucker

The aim of this study is an investigation of the joint limiting distribution of the sequence of partial sums of the positive parts and negative parts of a sequence of independent identically distributed random variables. In particular, let {Xn} be a sequence of independent identically distributed random variables with common distribution function F, assume F is in the domain of attraction of a stable distribution with characteristic exponent α, 0 < α ≦ 2, and let {Bn} be normalizing coefficients for F. Let us denote Xn+ = XnI[Xn > 0] and Xn− = − XnI[Xn<0], so that Xn = Xn+ - Xn−. Let F+ and F− denote the distribution functions of X1+ and X1− respectively, and let Sn(+) = X1+ + · · · + Xn+, Sn(-) = X1− + · · · + Xn−. The problem considered here is to find under what conditions there exist sequences of real numbers {an} and {bn} such that the joint distribution of (Bn-1Sn(+) + an, Bn-1Sn(-) + bn) converges to that of two independent random variables (U, V). As might be expected, different results are obtained when α < 2 and when α = 2. When α < 2, there always exist such sequences so that the above is true, and in this case both U and V are stable with characteristic exponent a, or one has such a stable distribution and the other is constant. When α = 2, and if 0 < ∫ x2dF(x) < ∞, then there always exist such sequences such that the above convergence takes place; both U and V are normal (possibly one is a constant), and if neither is a constant, then U and V are not independent. If α = 2 and ∫ x2dF(x) = ∞, then at least one of F+, F− is in the domain of partial attraction of the normal distribution, and a modified statement on the independence of U and V holds. Various specialized results are obtained for α = 2.


1975 ◽  
Vol 12 (S1) ◽  
pp. 29-37
Author(s):  
Lajos Takács

The author determines the distribution and the limit distribution of the number of partial sums greater than k (k = 0, 1, 2, …) for n mutually independent and identically distributed discrete random variables taking on the integers 1, 0, − 1, − 2, ….


2008 ◽  
Vol 8 (2) ◽  
pp. 143-154 ◽  
Author(s):  
P. KARCZMAREK

AbstractIn this paper, Jacobi and trigonometric polynomials are used to con-struct the approximate solution of a singular integral equation with multiplicative Cauchy kernel in the half-plane.


1972 ◽  
Vol 9 (3) ◽  
pp. 681-683
Author(s):  
Leon Podkaminer

The probabilities of the occurrence of n events in a certain time period are calculated under the assumptions that the time intervals between the neighbouring events are mutually independent random variables, satisfying some analytic conditions.


2017 ◽  
Vol 24 (2) ◽  
pp. 448-464 ◽  
Author(s):  
Jie Yan ◽  
Changwen Mi ◽  
Zhixin Liu

In this work, we examine the receding contact between a homogeneous elastic layer and a half-plane substrate reinforced by a functionally graded coating. The material properties of the coating are allowed to vary exponentially along its thickness. A distributed traction load applied over a finite segment of the layer surface presses the layer and the coated substrate against each other. It is further assumed that the receding contact between the layer and the coated substrate is frictionless. In the absence of body forces, Fourier integral transforms are used to convert the governing equations and boundary conditions of the plane receding contact problem into a singular integral equation with the contact pressure and contact size as unknowns. Gauss–Chebyshev quadrature is subsequently employed to discretize both the singular integral equation and the force equilibrium condition at the contact interface. An iterative algorithm based on the method of steepest descent has been proposed to numerically solve the system of algebraic equations, which is linear for the contact pressure but nonlinear for the contact size. Extensive case studies are performed with respect to the coating inhomogeneity parameter, geometric parameters, material properties, and the extent of the indentation load. As a result of the indentation, the elastic layer remains in contact with the coated substrate over only a finite interval. Exterior to this region, the layer and the coated substrate lose contact. Nonetheless, the receding contact size is always larger than that of the indentation traction. To validate the theoretical solution, we have also developed a finite-element model to solve the same receding contact problem. Numerical results of finite-element modeling and theoretical development are compared in detail for a number of parametric studies and are found to agree very well with each other.


Sign in / Sign up

Export Citation Format

Share Document