On the best-choice problem when the number of observations is random

1983 ◽  
Vol 20 (1) ◽  
pp. 165-171 ◽  
Author(s):  
Joseph D. Petruccelli

We consider the problem of maximizing the probability of choosing the largest from a sequence of N observations when N is a bounded random variable. The present paper gives a necessary and sufficient condition, based on the distribution of N, for the optimal stopping rule to have a particularly simple form: what Rasmussen and Robbins (1975) call an s(r) rule. A second result indicates that optimal stopping rules for this problem can, with one restriction, take virtually any form.

1983 ◽  
Vol 20 (01) ◽  
pp. 165-171 ◽  
Author(s):  
Joseph D. Petruccelli

We consider the problem of maximizing the probability of choosing the largest from a sequence of N observations when N is a bounded random variable. The present paper gives a necessary and sufficient condition, based on the distribution of N, for the optimal stopping rule to have a particularly simple form: what Rasmussen and Robbins (1975) call an s(r) rule. A second result indicates that optimal stopping rules for this problem can, with one restriction, take virtually any form.


1984 ◽  
Vol 16 (01) ◽  
pp. 111-130
Author(s):  
Joseph D. Petruccelli

From one point of view this paper adds to a previous formulation of the best-choice problem (Petruccelli (1981)) the possibility that the number of available observations, rather than being known, is a bounded random variable N with known distribution. From another perspective, it expands the formulations of Presman and Sonin (1972) and Rasmussen and Robbins (1975) to include recall and uncertainty of selection of observations. The behaviour of optimal stopping rules is examined under various assumptions on the general model. For optimal stopping rules and their probabilities of best choice relations are obtained between the bounded and unbounded N cases. Two particular classes of stopping rules which generalize the s(r) rules of Rasmussen and Robbins (1975) are considered in detail.


1984 ◽  
Vol 16 (1) ◽  
pp. 111-130 ◽  
Author(s):  
Joseph D. Petruccelli

From one point of view this paper adds to a previous formulation of the best-choice problem (Petruccelli (1981)) the possibility that the number of available observations, rather than being known, is a bounded random variable N with known distribution. From another perspective, it expands the formulations of Presman and Sonin (1972) and Rasmussen and Robbins (1975) to include recall and uncertainty of selection of observations. The behaviour of optimal stopping rules is examined under various assumptions on the general model. For optimal stopping rules and their probabilities of best choice relations are obtained between the bounded and unbounded N cases. Two particular classes of stopping rules which generalize the s(r) rules of Rasmussen and Robbins (1975) are considered in detail.


2016 ◽  
Vol 48 (3) ◽  
pp. 726-743 ◽  
Author(s):  
Mitsushi Tamaki

Abstract The best-choice problem and the duration problem, known as versions of the secretary problem, are concerned with choosing an object from those that appear sequentially. Let (B,p) denote the best-choice problem and (D,p) the duration problem when the total number N of objects is a bounded random variable with prior p=(p1, p2,...,pn) for a known upper bound n. Gnedin (2005) discovered the correspondence relation between these two quite different optimal stopping problems. That is, for any given prior p, there exists another prior q such that (D,p) is equivalent to (B,q). In this paper, motivated by his discovery, we attempt to find the alternate correspondence {p(m),m≥0}, i.e. an infinite sequence of priors such that (D,p(m-1)) is equivalent to (B,p(m)) for all m≥1, starting with p(0)=(0,...,0,1). To be more precise, the duration problem is distinguished into (D1,p) or (D2,p), referred to as model 1 or model 2, depending on whether the planning horizon is N or n. The aforementioned problem is model 1. For model 2 as well, we can find the similar alternate correspondence {p[m],m≥ 0}. We treat both the no-information model and the full-information model and examine the limiting behaviors of their optimal rules and optimal values related to the alternate correspondences as n→∞. A generalization of the no-information model is given. It is worth mentioning that the alternate correspondences for model 1 and model 2 are respectively related to the urn sampling models without replacement and with replacement.


2020 ◽  
Vol 26 ◽  
pp. 51
Author(s):  
Stefan Ankirchner ◽  
Maike Klein

We study a stopping problem arising from a sequential testing of two simple hypotheses H0 and H1 on the drift rate of a Brownian motion. We impose an expectation constraint on the stopping rules allowed and show that an optimal stopping rule satisfying the constraint can be found among the rules of the following type: stop if the posterior probability for H1 attains a given lower or upper barrier; or stop if the posterior probability comes back to a fixed intermediate point after a sufficiently large excursion. Stopping at the intermediate point means that the testing is abandoned without accepting H0 or H1. In contrast to the unconstrained case, optimal stopping rules, in general, cannot be found among interval exit times. Thus, optimal stopping rules in the constrained case qualitatively differ from optimal rules in the unconstrained case.


Author(s):  
Carsten Wiuf ◽  
Michael P.H Stumpf

In this paper, we discuss statistical families with the property that if the distribution of a random variable X is in , then so is the distribution of Z ∼Bi( X ,  p ) for 0≤ p ≤1. (Here we take Z ∼Bi( X ,  p ) to mean that given X = x ,  Z is a draw from the binomial distribution Bi( x ,  p ).) It is said that the family is closed under binomial subsampling. We characterize such families in terms of probability generating functions and for families with finite moments of all orders we give a necessary and sufficient condition for the family to be closed under binomial subsampling. The results are illustrated with power series and other examples, and related to examples from mathematical biology. Finally, some issues concerning inference are discussed.


2004 ◽  
Vol 41 (2) ◽  
pp. 483-496 ◽  
Author(s):  
Pieter Allaart

Optimal stopping rules are developed for the correlated random walk when future returns are discounted by a constant factor per unit time. The optimal rule is shown to be of dual threshold form: one threshold for stopping after an up-step, and another for stopping after a down-step. Precise expressions for the thresholds are given for both the positively and the negatively correlated cases. The optimal rule is illustrated by several numerical examples.


Sign in / Sign up

Export Citation Format

Share Document