Modified Reproduction Strategy of Leek Allium porrum in Response to a Phytophagous Insect, Acrolepiopsis assectella

Oikos ◽  
1979 ◽  
Vol 33 (3) ◽  
pp. 451 ◽  
Author(s):  
Josette Boscher

2011 ◽  
Vol 143 (2) ◽  
pp. 185-196 ◽  
Author(s):  
P.G. Mason ◽  
R.M. Weiss ◽  
O. Olfert ◽  
M. Appleby ◽  
J.-F. Landry

AbstractAcrolepiopsis assectella (Zeller), leek moth, is a widespread and common pest of species of Allium L. (Liliaceae) in the western Palaearctic subregion. The establishment of A. assectella in eastern North America has resulted in economic losses to garlic (Allium sativum L.), leek (Allium porrum L.), and onion (Allium cepa L.) growers, especially to organic producers in eastern Ontario and southern Quebec. Acrolepiopsis assectella was first recorded in the Ottawa area in 1993. By 2010, A. assectella had expanded its range into eastern Ontario, southwestern Quebec, Prince Edward Island, and New York. A bioclimate model, using CLIMEX simulation software, was developed to produce mapped results that closely approximated known distributions for A. assectella in central Europe. This model was then validated with recorded distribution records in eastern Europe, Asia, and North America. Model output predicted that A. assectella will readily survive in southeastern Canada and the eastern United States of America. Other areas potentially suitable for A. assectella include coastal regions of the Pacific Northwest, the interior of southern British Columbia, and north-central Mexico. The continued range expansion of A. assectella into other Allium-growing areas of eastern North America appears to be inevitable. Establishment in these areas presents the risk of substantial production losses to Allium spp. producers.



2020 ◽  
Vol 43 ◽  
pp. e44062
Author(s):  
Maria Lorraine Fonseca Oliveira ◽  
Telma Nair Santana Pereira ◽  
Rodrigo Miranda Barbosa ◽  
Alexandre Pio Viana

This research aimed to explore the reproductive characteristics of three species of Psidium (P. guajava L., P. cattleyanum Sabine, and P. guineense Sw.) and estimate a probable reproduction strategy based on the pollen:ovule (P:O) methodology. The number of pollen grains per floral bud (NGPB), number of pollen grains per anther (NGPA), number of anthers per flower bud (NAB), number of ovules per flower bud (NOB), and the P:O ratio of each species were estimated. All species had a P:O ratio over 2,000 and were classified as xenogamous. P.guajava presented the highest values for all characteristics evaluated, with the NGPB at 3,777,519, the NOB at 584.50 and a P:O ratio of 6,462.82. Similarly, P. cattleyanum had a P:O ratio of 5,649.89 (NGPB 762,736 and NOB 135). However, P. guineense was considered facultative xenogamous, with P:O of 2,085.75, the NGPB at 741,484 and the NOB at 355.50. Thus, it was concluded that the studied species have a preference for allogamy and require many pollen grains to fertilize each ovule, demonstrating that the transfer of pollen to the stigma is not very specialized.







Sign in / Sign up

Export Citation Format

Share Document