Architecture and Developmental Dynamics of the External Mycelium of the Arbuscular Mycorrhizal Fungus Glomus intraradices Grown under Monoxenic Conditions

Mycologia ◽  
1998 ◽  
Vol 90 (1) ◽  
pp. 52 ◽  
Author(s):  
Berta Bago ◽  
Concepcion Azcon-Aguilar ◽  
Yves Piche
2001 ◽  
Vol 79 (3) ◽  
pp. 307-313 ◽  
Author(s):  
S Timonen ◽  
F A Smith ◽  
S E Smith

In this study the presence and orientation of fungal microtubules were recorded in arbuscular mycorrhizal symbiosis for the first time. Visualization of the fungal microtubules was achieved by using a protocol specifically labelling only fungal tubulins. Microtubules of external mycelium, intraradical hyphae, arbuscules, and vesicles of the arbuscular mycorrhizal fungus Glomus intraradices Schenck & Smith were examined when in symbiosis with tomato (Lycopersicon esculentum Mill.). Microtubules were organized as bundles in both external and intraradical hyphae. The bundles of microtubules extended directly from intraradical hyphae into the arbuscules, where the microtubules remained as bundles in the larger hyphae. In the fine fungal branches of the arbuscules, microtubules were seen as thinner filaments. Fungal microtubules were seen to connect the intraradical hyphae and arbuscules. In addition, microtubules of adjacent arbuscules could continue directly from one arbuscule to another. Microtubules reached to the basal cone of each vesicle, but the live vesicles, containing many nuclei, seemed devoid of any microtubular labelling.Key words: cytoskeleton, endomycorrhiza, filamentous fungi, tomato, tubulin, Zygomycota.


2012 ◽  
Vol 49 (4) ◽  
pp. 313-321 ◽  
Author(s):  
Kinga A. Sędzielewska ◽  
Katja Vetter ◽  
Rüdiger Bode ◽  
Keith Baronian ◽  
Roland Watzke ◽  
...  

Planta ◽  
1999 ◽  
Vol 207 (4) ◽  
pp. 620-623 ◽  
Author(s):  
Walter Maier ◽  
Jürgen Schmidt ◽  
Victor Wray ◽  
Michael Herbert Walter ◽  
Dieter Strack

Plant Disease ◽  
2006 ◽  
Vol 90 (12) ◽  
pp. 1481-1484 ◽  
Author(s):  
Elsa Petit ◽  
Walter Douglas Gubler

We examined the influence of an arbuscular-mycorrhizal fungus, Glomus intraradices (INVAM CA 501), on black foot disease caused by the fungus Cylindrocarpon macrodidymum on Vitis rupestris cv. St. George under controlled conditions. Mycorrhizal or nonmycorrhizal grape rootings were inoculated with the pathogen. Eight months following inoculation with the pathogen, we evaluated disease severity, vine growth, and mycorrhizal colonization. Mycorrhizal plants developed significantly less leaf and root symptoms than nonmycorrhizal plants (P = 0.04 and P < 0.0001, respectively). Only nonmycorrhizal grape rootings inoculated with the pathogen had significantly less dry root and leaf weights compared with the noninoculated control (P = 0.0021 and P = 0.0017, respectively). Mycorrhizal colonization was high (48.3% for the noninfected control and 54.5% for plants infected with C. macrodidymum) and not significantly affected by inoculation with C. macrodidymum (P = 0.2256). Thus, V. rupestris preinoculated with G. intraradices were less susceptible to black foot disease than nonmycorrhizal plants. Results from this study suggest that preplant applications of G. intraradices may help prevent black foot disease in the nursery and in the vineyard.


Sign in / Sign up

Export Citation Format

Share Document