Mycorrhiza
Latest Publications


TOTAL DOCUMENTS

1854
(FIVE YEARS 187)

H-INDEX

85
(FIVE YEARS 6)

Published By Springer-Verlag

1432-1890, 0940-6360

Mycorrhiza ◽  
2022 ◽  
Author(s):  
Jiqiong Zhou ◽  
Gail W. T. Wilson ◽  
Adam B. Cobb ◽  
Yingjun Zhang ◽  
Lin Liu ◽  
...  

Mycorrhiza ◽  
2022 ◽  
Author(s):  
Carolyn J. Schultz ◽  
Yue Wu ◽  
Ute Baumann

AbstractDiversity in arbuscular mycorrhizal fungi (AMF) contributes to biodiversity and resilience in natural environments and healthy agricultural systems. Functional complementarity exists among species of AMF in symbiosis with their plant hosts, but the molecular basis of this is not known. We hypothesise this is in part due to the difficulties that current sequence assembly methodologies have assembling sequences for intrinsically disordered proteins (IDPs) due to their low sequence complexity. IDPs are potential candidates for functional complementarity because they often exist as extended (non-globular) proteins providing additional amino acids for molecular interactions. Rhizophagus irregularis arabinogalactan-protein-like proteins (AGLs) are small secreted IDPs with no known orthologues in AMF or other fungi. We developed a targeted bioinformatics approach to identify highly variable AGLs/IDPs in RNA-sequence datasets. The approach includes a modified multiple k-mer assembly approach (Oases) to identify candidate sequences, followed by targeted sequence capture and assembly (mirabait-mira). All AMF species analysed, including the ancestral family Paraglomeraceae, have small families of proteins rich in disorder promoting amino acids such as proline and glycine, or glycine and asparagine. Glycine- and asparagine-rich proteins also were found in Geosiphon pyriformis (an obligate symbiont of a cyanobacterium), from the same subphylum (Glomeromycotina) as AMF. The sequence diversity of AGLs likely translates to functional diversity, based on predicted physical properties of tandem repeats (elastic, amyloid, or interchangeable) and their broad pI ranges. We envisage that AGLs/IDPs could contribute to functional complementarity in AMF through processes such as self-recognition, retention of nutrients, soil stability, and water movement.


Mycorrhiza ◽  
2022 ◽  
Author(s):  
Bolaji Thanni ◽  
Roel Merckx ◽  
Pieterjan De Bauw ◽  
Margaux Boeraeve ◽  
Gerrit Peeters ◽  
...  

AbstractCassava, forming starch-rich, tuberous roots, is an important staple crop in smallholder farming systems in sub-Saharan Africa. Its relatively good tolerance to drought and nutrient-poor soils may be partly attributed to the crop’s association with arbuscular mycorrhiza fungi (AMF). Yet insights into AMF-community composition and richness of cassava, and knowledge of its environmental drivers are still limited. Here, we sampled 60 cassava fields across three major cassava-growing agro-ecological zones in Nigeria and used a DNA meta-barcoding approach to quantify large-scale spatial variation and evaluate the effects of soil characteristics and common agricultural practices on AMF community composition, richness and Shannon diversity. We identified 515 AMF operational taxonomic units (OTUs), dominated by Glomus, with large variation across agro-ecological zones, and with soil pH explaining most of the variation in AMF community composition. High levels of soil available phosphorus reduced OTU richness without affecting Shannon diversity. Long fallow periods (> 5 years) reduced AMF richness compared with short fallows, whereas both zero tillage and tractor tillage reduced AMF diversity compared with hoe tillage. This study reveals that the symbiotic relationship between cassava and AMF is strongly influenced by soil characteristics and agricultural management and that it is possible to adjust cassava cultivation practices to modify AMF diversity and community structure. Graphical abstract


Mycorrhiza ◽  
2021 ◽  
Author(s):  
Cecilia L. López ◽  
Cesar Mayta ◽  
Kazuya Naoki ◽  
Jorge A. N. Quezada ◽  
Isabell Hensen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document