black foot
Recently Published Documents


TOTAL DOCUMENTS

84
(FIVE YEARS 25)

H-INDEX

17
(FIVE YEARS 4)

Pathogens ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1555
Author(s):  
Pranami D. Abeywickrama ◽  
Wei Zhang ◽  
Xinghong Li ◽  
Ruvishika S. Jayawardena ◽  
Kevin D. Hyde ◽  
...  

The black-foot disease of grapevine is one of the most destructive diseases in viticulture and it is caused by a complex of soil-borne fungi. This study aimed to identify the species associated with black-foot disease in young grapevines in vineyards of China. Fungal isolates were identified as Campylocarpon fasciculare, based on both morphological and multi-locus phylogenetic analysis of ITS, tef1–α and ß-tubulin sequence data. For the first time in China, we report Campylocarpon fasciculare associated with symptomatic young grapevines. Koch’s postulates were performed on Vitis vinifera cv. Summer Black (SB) in a greenhouse and to confirm the pathogenicity on grapevines. This work improves the knowledge of black-foot disease in Chinese vineyards and will be helpful to growers in their decisions regarding vinicultural practices, planting and disease management.


2021 ◽  
pp. 100929
Author(s):  
José M. Cañizares ◽  
Diego Castejón ◽  
Ricardo Haroun ◽  
Natacha Nogueira ◽  
Carlos A.P. Andrade
Keyword(s):  

2021 ◽  
Vol 21 ◽  
pp. 100856
Author(s):  
José M. Cañizares ◽  
Diego Castejón ◽  
Ricardo Haroun ◽  
Natacha Nogueira ◽  
Carlos A.P. Andrade
Keyword(s):  

2021 ◽  
Vol 74 (1) ◽  
pp. 62-69
Author(s):  
Carolyn Bleach ◽  
Hayley J. Ridgway ◽  
Marlene V. Jaspers ◽  
E. Eirian Jones

Black foot disease of grapevines is a major economic issue for the viticulture industry worldwide. The disease is mainly associated with a complex of pathogen species within the genera Dactylonectria and Ilyonectria. The susceptibility of six grapevine rootstock cultivars to black foot disease under field conditions was assessed. Callused rootstocks of 101-14, 5C, 420A, Riparia Gloire, Schwarzmann and 3309C were planted into soil containing low natural pathogen populations or inoculated with isolates representing the species diversity in New Zealand. Disease incidence, disease severity and dry weight accumulation were assessed after 8 months of growth. Root and shoot dry weights were not significantly affected by inoculation treatment, but differed among rootstock cultivars, with cultivar 420A having the lowest root and shoot dry weight, cultivar 3309C having the largest shoot dry weight and cultivar 5C the largest root dry weight. The relative susceptibility of rootstocks differed significantly depending on whether they were grown under low natural inoculum pressure or a higher pressure in artificially inoculated soil. Schwarzmann and Riparia Gloire rootstock cultivars were the least susceptible under natural low inoculum pressure, but were the most susceptible in inoculated soil. In contrast, 5C was one of the most susceptible under low inoculum levels but was the least susceptible under high pathogen pressure. The result of the study indicate that black foot pathogen inoculum levels in soil affect the relative susceptibility of grapevine rootstocks to infection, and may have implications for the selection of rootstocks for planting.


2021 ◽  
Vol 60 (2) ◽  
pp. 303-319
Author(s):  
Qingtong YE ◽  
Wei ZHANG ◽  
Jingyi JIA ◽  
Xinghong LI ◽  
Yueyan ZHOU ◽  
...  

Grapevine trunk diseases (GTDs) are the most destructive diseases in grape-growing regions worldwide. Black foot is one of the important GTDs affecting young vineyards and nurseries. This disease has not been reported in China. During 2017 and 2019, field surveys were carried out in the Guangxi, Hebei, Ningxia, Shanxi, and Xinjiang provinces of China. Incidence of plants with black foot symptoms was 0.1% to 1% in the surveyed vineyards. Plant samples with poorly developed shoots and canes, chlorotic leaves, and necrotic trunks or roots were collected from the five provinces. In total, 50 fungal isolates were obtained from symptomatic tissues. Based on morphological and multi-gene phylogenetic analyses, five species were identified as Cylindrocladiella lageniformis, Dactylonectria torresensis, D. macrodidyma, D. alcacerensis and Neonectria sp.1. Pathogenicity was assessed using young, healthy detached green shoots of grapevine ‘Summer Black’ and potted 3-month-old ‘Summer Black’ cuttings. Inoculated detached shoots developed necroses after 7 d, and inoculated cuttings after 80 d. Fungi were re-isolated from necrotic lesions. Among the five species, D. macrodidyma was the most aggressive. This is the first report of C. lageniformis, D. torresensis, D. macrodidyma, D. alcacerensis, and Neonectria sp. 1 associated with black foot in China. This study has enhanced knowledge of the fungi associated with black foot in China, and will assist development of control measures for this disease.


2021 ◽  
Vol 42 (15) ◽  
pp. 5680-5697
Author(s):  
Pâmela A. Pithan ◽  
Jorge R. Ducati ◽  
Lucas R. Garrido ◽  
Diniz C. Arruda ◽  
Adriane B. Thum ◽  
...  

Biology ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 498
Author(s):  
Maela León ◽  
Mónica Berbegal ◽  
Paloma Abad-Campos ◽  
Antonio Ramón-Albalat ◽  
Tito Caffi ◽  
...  

(1) Background. An extensive survey of grapevine-sown cover crops and spontaneous weed flora was conducted from 2019 to 2020 in organic vineyards in six European countries (France, Italy, Romania, Slovenia, Spain, Switzerland). Our main objective was to detect and identify the presence of Cylindrocarpon-like asexual morphs species associated with black-foot disease on their roots. (2) Methods. Fungal isolations from root fragments were performed on culture media. Cylindrocarpon-like asexual morph species were identified by analyzing the DNA sequence data of the histone H3 (his3) gene region. In all, 685 plants belonging to different botanical families and genera were analyzed. Cylindrocarpon-like asexual morphs were recovered from 68 plants (9.9% of the total) and approximately 0.97% of the plated root fragments. (3) Results. Three fungal species (Dactylonectria alcacerensis, Dactylonectria torresensis, Ilyonectria robusta) were identified. Dactylonectria torresensis was the most frequent, and was isolated from many cover crop species in all six countries. A principal component analysis with the vineyard variables showed that seasonal temperatures and organic matter soil content correlated positively with Cylindrocarpon-like asexual morphs incidence. (4) Conclusions. The presence of Cylindrocarpon-like asexual morphs on roots of cover crops suggests that they can potentially act as alternative hosts for long-term survival or to increase inoculum levels in vineyard soils.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 892
Author(s):  
Hanna Kwaśna ◽  
Wojciech Szewczyk ◽  
Marlena Baranowska ◽  
Ewa Gallas ◽  
Milena Wiśniewska ◽  
...  

In 2017, a 560-ha area of hybrid poplar plantation in northern Poland showed symptoms of tree decline. The leaves appeared smaller, yellow-brown, and were shed prematurely. Twigs and smaller branches died without distinct cankers. Trunks decayed from the base. The phloem and xylem showed brown necrosis. Ten percent of the trees died 1–2 months after the first appearance of the symptoms. None of these symptoms were typical for known poplar diseases. The trees’ mycobiota were analysed using Illumina sequencing. A total of 69 467 and 70 218 operational taxonomic units (OTUs) were obtained from the soil and wood. Blastocladiomycota and Chytridiomycota occurred only in the soil, with very low frequencies (0.005% and 0.008%). Two taxa of Glomeromycota, with frequencies of 0.001%, occurred in the wood. In the soil and wood, the frequencies of Zygomycota were 3.631% and 0.006%, the frequencies of Ascomycota were 45.299% and 68.697%, and the frequencies of Basidiomycota were 4.119% and 2.076%. At least 400 taxa of fungi were present. The identifiable Zygomycota, Ascomycota, and Basidiomycota were represented by at least 18, 263 and 81 taxa, respectively. Many fungi were common to the soil and wood, but 160 taxa occurred only in soil and 73 occurred only in wood. The root pathogens included species of Oomycota. The vascular and parenchymal pathogens included species of Ascomycota and of Basidiomycota. The initial endophytic character of the fungi is emphasized. Soil, and possibly planting material, may be the sources of the pathogen inoculum, and climate warming is likely to be a predisposing factor. A water deficit may increase the trees’ susceptibility. The epidemiology of poplar vascular wilt reminds grapevine trunk diseases (GTD), including esca, black foot disease and Petri disease.


Sign in / Sign up

Export Citation Format

Share Document