Atom Optics and Atom Interferometry

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Kai Frye ◽  
Sven Abend ◽  
Wolfgang Bartosch ◽  
Ahmad Bawamia ◽  
Dennis Becker ◽  
...  

AbstractMicrogravity eases several constraints limiting experiments with ultracold and condensed atoms on ground. It enables extended times of flight without suspension and eliminates the gravitational sag for trapped atoms. These advantages motivated numerous initiatives to adapt and operate experimental setups on microgravity platforms. We describe the design of the payload, motivations for design choices, and capabilities of the Bose-Einstein Condensate and Cold Atom Laboratory (BECCAL), a NASA-DLR collaboration. BECCAL builds on the heritage of previous devices operated in microgravity, features rubidium and potassium, multiple options for magnetic and optical trapping, different methods for coherent manipulation, and will offer new perspectives for experiments on quantum optics, atom optics, and atom interferometry in the unique microgravity environment on board the International Space Station.


1997 ◽  
Vol 135 (1-3) ◽  
pp. 14-18
Author(s):  
M.L Marable ◽  
T.A Savard ◽  
J.E Thomas

Author(s):  
J. Arlt ◽  
G. Birkl ◽  
E. Rasel ◽  
W. Ertmer

Author(s):  
Tim Kovachy ◽  
Alex Sugarbaker ◽  
Remy Notermans ◽  
Peter Asenbaum ◽  
Chris Overstreet ◽  
...  

This chapter introduces the fundamental principles and some of the applications of light-pulse atom interferometry. It includes tutorials on various atom optics techniques and on interferometer phase shift calculations. Recent advances in large momentum transfer atom optics and in the generation and manipulation of ultra-low-velocity-spread atom clouds have enabled atom interferometers that cover macroscopic scales in space (tens of centimeters) and in time (multiple seconds), dramatically improving interferometer sensitivity in a wide range of applications. This chapter reviews these advances and recent experiments performed with macroscopic scale atom interferometers in the 10-meter-tall atomic fountain at Stanford.


2021 ◽  
Author(s):  
Christian Schubert ◽  
Waldemar Herr ◽  
Holger Ahlers ◽  
Naceur Gaaloul ◽  
Wolfgang Ertmer ◽  
...  

<p>Atom interferometry enables quantum sensors for absolute measurements of gravity (1) and gravity gradients (2). The combination with classical sensors can be exploited to suppress vibration noise in the interferometer, extend the dynamic range, or to remove the drift from the classical device (3). These features motivate novel sensor and mission concepts for space-borne earth observation e.g. with quantum gradiometers (4) or hybridised atom interferometers (5). We will discuss developments of atom optics and atom interferometry in microgravity in the context of future quantum sensors (6) and outline the perspectives for applications in space (4,5).</p><p>The presented work is supported by by the CRC 1227 DQmat within the projects B07 and B09, the CRC 1464 TerraQ within the projects A01, A02 and A03, by "Niedersächsisches Vorab" through "Förderung von Wissenschaft und Technik in Forschung und Lehre" for the initial funding of research in the new DLR-SI Institute, and through the "Quantum and Nano- Metrology (QUANOMET)" initiative within the project QT3.</p><p>(1) V. Ménoret et al., Scientific Reports 8, 12300, 2018; A. Trimeche et al., Phys. Rev. Appl. 7, 034016, 2017; C. Freier et al., J. of Phys.: Conf. Series 723, 012050, 2016; A. Louchet-Chauvet et al., New J. Phys. 13, 065026, 2011; A. Peters et al., Nature 400, 849, 1999.</p><p>(2) P. Asenbaum et al., Phys. Rev. Lett. 118, 183602, 2017; M. J. Snadden et al., Phys. Rev. Lett. 81, 971, 1998.</p><p>(3) L. Richardson et al., Comm. Phys. 3, 208, 2020; P. Cheiney et al., Phys. Rev. Applied 10, 034030, 2018; J. Lautier et al., Appl. Phys. Lett. 105, 144102, 2014.</p><p>(4) A. Trimeche et al., Class. Quantum Grav. 36, 215004, 2019; K. Douch et al., Adv. Space. Res. 61, 1301, 2018.</p><p>(5) T. Lévèque et al., arXiv:2011.03382; S. Chiow et al., Phys. Rev. A 92, 063613, 2015.</p><p>(6) M. Lachmann et al., arXiv:2101.00972; K. Frye et al., EPJ Quant. Technol. 8, 1, 2021; D. Becker et al., Nature 562, 391, 2018; J. Rudolph et al., New J. Phys. 17, 065001, 2015; H. Müntinga et al., Phys. Rev. Lett. 110, 093602 , 2013.</p>


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Maike D. Lachmann ◽  
Holger Ahlers ◽  
Dennis Becker ◽  
Aline N. Dinkelaker ◽  
Jens Grosse ◽  
...  

AbstractBose-Einstein condensates (BECs) in free fall constitute a promising source for space-borne interferometry. Indeed, BECs enjoy a slowly expanding wave function, display a large spatial coherence and can be engineered and probed by optical techniques. Here we explore matter-wave fringes of multiple spinor components of a BEC released in free fall employing light-pulses to drive Bragg processes and induce phase imprinting on a sounding rocket. The prevailing microgravity played a crucial role in the observation of these interferences which not only reveal the spatial coherence of the condensates but also allow us to measure differential forces. Our work marks the beginning of matter-wave interferometry in space with future applications in fundamental physics, navigation and earth observation.


Sign in / Sign up

Export Citation Format

Share Document