Macroscopic scale atom interferometers: introduction, techniques, and applications

Author(s):  
Tim Kovachy ◽  
Alex Sugarbaker ◽  
Remy Notermans ◽  
Peter Asenbaum ◽  
Chris Overstreet ◽  
...  

This chapter introduces the fundamental principles and some of the applications of light-pulse atom interferometry. It includes tutorials on various atom optics techniques and on interferometer phase shift calculations. Recent advances in large momentum transfer atom optics and in the generation and manipulation of ultra-low-velocity-spread atom clouds have enabled atom interferometers that cover macroscopic scales in space (tens of centimeters) and in time (multiple seconds), dramatically improving interferometer sensitivity in a wide range of applications. This chapter reviews these advances and recent experiments performed with macroscopic scale atom interferometers in the 10-meter-tall atomic fountain at Stanford.

2021 ◽  
Author(s):  
Christian Schubert ◽  
Waldemar Herr ◽  
Holger Ahlers ◽  
Naceur Gaaloul ◽  
Wolfgang Ertmer ◽  
...  

<p>Atom interferometry enables quantum sensors for absolute measurements of gravity (1) and gravity gradients (2). The combination with classical sensors can be exploited to suppress vibration noise in the interferometer, extend the dynamic range, or to remove the drift from the classical device (3). These features motivate novel sensor and mission concepts for space-borne earth observation e.g. with quantum gradiometers (4) or hybridised atom interferometers (5). We will discuss developments of atom optics and atom interferometry in microgravity in the context of future quantum sensors (6) and outline the perspectives for applications in space (4,5).</p><p>The presented work is supported by by the CRC 1227 DQmat within the projects B07 and B09, the CRC 1464 TerraQ within the projects A01, A02 and A03, by "Niedersächsisches Vorab" through "Förderung von Wissenschaft und Technik in Forschung und Lehre" for the initial funding of research in the new DLR-SI Institute, and through the "Quantum and Nano- Metrology (QUANOMET)" initiative within the project QT3.</p><p>(1) V. Ménoret et al., Scientific Reports 8, 12300, 2018; A. Trimeche et al., Phys. Rev. Appl. 7, 034016, 2017; C. Freier et al., J. of Phys.: Conf. Series 723, 012050, 2016; A. Louchet-Chauvet et al., New J. Phys. 13, 065026, 2011; A. Peters et al., Nature 400, 849, 1999.</p><p>(2) P. Asenbaum et al., Phys. Rev. Lett. 118, 183602, 2017; M. J. Snadden et al., Phys. Rev. Lett. 81, 971, 1998.</p><p>(3) L. Richardson et al., Comm. Phys. 3, 208, 2020; P. Cheiney et al., Phys. Rev. Applied 10, 034030, 2018; J. Lautier et al., Appl. Phys. Lett. 105, 144102, 2014.</p><p>(4) A. Trimeche et al., Class. Quantum Grav. 36, 215004, 2019; K. Douch et al., Adv. Space. Res. 61, 1301, 2018.</p><p>(5) T. Lévèque et al., arXiv:2011.03382; S. Chiow et al., Phys. Rev. A 92, 063613, 2015.</p><p>(6) M. Lachmann et al., arXiv:2101.00972; K. Frye et al., EPJ Quant. Technol. 8, 1, 2021; D. Becker et al., Nature 562, 391, 2018; J. Rudolph et al., New J. Phys. 17, 065001, 2015; H. Müntinga et al., Phys. Rev. Lett. 110, 093602 , 2013.</p>


Author(s):  
Jianxun Du ◽  
Peng Hao ◽  
Mabao Liu ◽  
Rui Xue ◽  
Lin’an Li

Because of the advantages of light weight, small size, and good maneuverability, the bio-inspired micro aerial vehicle has a wide range of application prospects and development potential in military and civil areas, and has become one of the research hotspots in the future aviation field. The beetle’s elytra possess high strength and provide the protection of the abdomen while being functional to guarantee its flight performance. In this study, the internal microstructure of beetle’s elytra was observed by scanning electron microscope (SEM), and a variety of bionic thin-walled structures were proposed and modelled. The energy absorption characteristics and protective performance of different configurations of thin-walled structures with hollow columns under impact loading was analyzed by finite element method. The parameter study was carried out to show the influence of the velocity of impactor, the impact angle of the impactor and the wall thickness of honeycomb structure. This study provides an important inspiration for the design of the protective structure of the micro aerial vehicle.


2020 ◽  
Vol 9 (5) ◽  
pp. 221-225
Author(s):  
Ravi Kumar ◽  
Ana Rakonjac

AbstractAtom interferometry is one of the most promising technologies for high precision measurements. It has the potential to revolutionise many different sectors, such as navigation and positioning, resource exploration, geophysical studies, and fundamental physics. After decades of research in the field of cold atoms, the technology has reached a stage where commercialisation of cold atom interferometers has become possible. This article describes recent developments, challenges, and prospects for quantum sensors for inertial sensing based on cold atom interferometry techniques.


2018 ◽  
Vol 121 (13) ◽  
Author(s):  
Benjamin Plotkin-Swing ◽  
Daniel Gochnauer ◽  
Katherine E. McAlpine ◽  
Eric S. Cooper ◽  
Alan O. Jamison ◽  
...  

2012 ◽  
Vol 24 (1) ◽  
pp. 225-228
Author(s):  
马强 Ma Qiang ◽  
蒙林 Meng Lin ◽  
殷勇 Yin Yong ◽  
严文韬 Yan Wentao

2011 ◽  
Vol 133 (12) ◽  
Author(s):  
Cong Qi ◽  
Yurong He ◽  
Yanwei Hu ◽  
Juancheng Yang ◽  
Fengchen Li ◽  
...  

In this work, the natural convection heat transfer of Cu-gallium nanofluid in a differentially heated enclosure is investigated. A single-phase model is employed with constant or temperature-dependent properties of the fluid. The results are shown over a wide range of Grashof numbers, volume fractions of nanoparticles, and aspect ratios. The Nusselt number is demonstrated to be sensitive to the aspect ratio. It is found that the Nusselt number is more sensitive to thermal conductivity than viscosity at a low velocity (especially for a low aspect ratio and a low Grashof number), however, it is more sensitive to the viscosity than the thermal conductivity at a high velocity (high aspect ratio and high Grashof number). In addition, the evolution of velocity vectors, isotherms, and Nusselt number for a small aspect ratio is investigated.


Sign in / Sign up

Export Citation Format

Share Document