Real-time Dynamic Hydraulic Model for Water Distribution Networks: Steady State Modelling

Author(s):  
Muhammad S Osman ◽  
Sonwabiso Yoyo ◽  
Philip R Page ◽  
Adnan M Abu-Mahfouz
2017 ◽  
Author(s):  
Stelios G. Vrachimis ◽  
Demetrios G. Eliades ◽  
Marios M. Polycarpou

Abstract. Hydraulic state estimation in water distribution networks is the task of estimating water flows and pressures in the pipes and nodes of the network based on some sensor measurements. This requires a model of the network, as well as knowledge of demand outflow and tank water levels. Due to modeling and measurement uncertainty, standard state-estimation may result in inaccurate hydraulic estimates without any measure of the estimation error. This paper describes a methodology for generating hydraulic state bounding estimates based on interval bounds on the parametric and measurement uncertainties. The estimation error bounds provided by this method can be applied to estimate the unaccounted-for water in water distribution networks. As a case study, the method is applied to a transport network in Cyprus, using actual data in real-time.


2019 ◽  
Vol 161 ◽  
pp. 517-530 ◽  
Author(s):  
E. Creaco ◽  
A. Campisano ◽  
N. Fontana ◽  
G. Marini ◽  
P.R. Page ◽  
...  

2007 ◽  
Vol 9 (1) ◽  
pp. 3-14 ◽  
Author(s):  
Derek G Jamieson ◽  
Uri Shamir ◽  
Fernando Martinez ◽  
Marco Franchini

This paper is intended to serve as an introduction to the POWADIMA research project, whose objective was to determine the feasibility and efficacy of introducing real-time, near-optimal control for water-distribution networks. With that in mind, its contents include the current state-of-the-art and some of the difficulties that would need to be addressed if the goal of near-optimal control was to be achieved. Subsequently, the approach adopted is outlined, together with the reasons for the choice. Since it would be somewhat impractical to use a conventional hydraulic simulation model for real-time, near-optimal control, the methodology includes replicating the model by an artificial neural network which, computationally, is far more efficient. Thereafter, the latter is embedded in a dynamic genetic algorithm, designed specifically for real-time use. In this way, the near-optimal control settings to meet the current demands and minimize the overall pumping costs up to the operating horizon can be derived. The programme of work undertaken in achieving this end is then described. By way of conclusion, the potential benefits arising from implementing the control system developed are briefly reviewed, as are the possibilities of using the same approach for other application areas.


Sign in / Sign up

Export Citation Format

Share Document