scholarly journals Giant Room-Temperature TMR Effect in Magnetic Tunnel Junctions with Crystalline MgO Tunnel Barrier

Materia Japan ◽  
2005 ◽  
Vol 44 (9) ◽  
pp. 734-741
Author(s):  
Shinji Yuasa ◽  
David D. Djayaprawira
MRS Bulletin ◽  
2006 ◽  
Vol 31 (5) ◽  
pp. 389-394 ◽  
Author(s):  
Stuart Parkin

AbstractSpin-polarized currents can be generated by spin-dependent diffusive scattering in magnetic thin-film structures or by spin-dependent tunneling across ultrathin dielectrics sandwiched between magnetic electrodes.By manipulating the magnetic moments of the magnetic components of these spintronic materials, their resistance can be significantly changed, allowing the development of highly sensitive magnetic-field detectors or advanced magnetic memory storage elements.Whereas the magneto-resistance of useful devices based on spin-dependent diffusive scattering has hardly changed since its discovery nearly two decades ago, in the past five years there has been a remarkably rapid development in both the basic understanding of spin-dependent tunneling and the magnitude of useful tunnel magnetoresistance values.In particular, it is now evident that the magnitude of the spin polarization of tunneling currents in magnetic tunnel junctions not only is related to the spin-dependent electronic structure of the ferromagnetic electrodes but also is considerably influenced by the properties of the tunnel barrier and its interfaces with the magnetic electrodes.Whereas the maximum tunnel magnetoresistance of devices using amorphous alumina tunnel barriers and 3d transition-metal alloy ferromagnetic electrodes is about 70% at room temperature, using crystalline MgO tunnel barriers in otherwise the same structures gives tunnel magnetoresistance values of more than 350% at room temperature.


2021 ◽  
Author(s):  
◽  
Felicia Ullstad

<p>In this thesis, we investigate the rare earth nitrides, a family of materials containing many intrinsic ferromagnetic semiconductors, with a particular focus on GdN and SmN.We investigate the rare earth nitride formation reaction, explore some properties of GdN and SmN, and finally manufacture and measure magnetic tunnel junctions which incorporate rare earth nitrides. The investigations of the reaction and properties of the materials are used to improve and understand the magnetic tunnel junctions. All samples and devices are grown at room temperature, giving polycrystalline rare earth nitride films.  We show that a rare earth surface can catalytically break theN2 molecule at ambient temperature and low pressures. We follow the nitrogen reacting with the rare earth to form a rare earth nitride in real time via conductance measurements. By comparing the N2 cracking, reaction, and diffusion at both a RE and a REN surface we propose a pressure range in which the nitrogen content in SmN can be manipulated and conclude that the nitrogen in the top monolayers in a SmN film is mobile.  In the investigation of GdN and SmN, we find that the conductivity of SmN follows the same behaviour as GdN when changing the N2 pressure during deposition. We follow the conductance change in SmN during deposition and propose a minimum thickness for room temperature deposited SmN films for consistent conductivity measurements. We report structural and magnetic changes in GdN which has been exposed to N-ions. We also present data on materials making ohmic contact to both GdN and SmN.  Finally, we report the manufacturing and investigation of magnetic tunnel junctions using GdN and SmN electrodes with a GaN tunnel barrier. A new pattern design produces 20 devices, in a single deposition, which show consistent behaviour and expands on previous work on this topic. The main focus of the investigation is the J-V characteristics of the magnetic tunnel junctions which shows clear non-linear behaviour arising from tunnelling through the GaN. A Simmons fit to the J-V characteristics yields a barrier height of 0:8 eV and barrier thicknesses close to experimentally determined thicknesses. The J-V characteristics are investigated with changing temperature and changing applied magnetic field to investigate the effect of the ferromagnetism of the GdN and SmN electrodes. The tunnel magnetoresistance (TMR) of the devices show two contributions, a low-temperature TMR contribution and a 50K TMR contribution, and the maximum TMR for all devices are between 100% to 600%. The devices can withstand current densities up to 4000A/cm² and voltages up to 5V which is promising for a wide range of future applications.</p>


2021 ◽  
Author(s):  
◽  
Felicia Ullstad

<p>In this thesis, we investigate the rare earth nitrides, a family of materials containing many intrinsic ferromagnetic semiconductors, with a particular focus on GdN and SmN.We investigate the rare earth nitride formation reaction, explore some properties of GdN and SmN, and finally manufacture and measure magnetic tunnel junctions which incorporate rare earth nitrides. The investigations of the reaction and properties of the materials are used to improve and understand the magnetic tunnel junctions. All samples and devices are grown at room temperature, giving polycrystalline rare earth nitride films.  We show that a rare earth surface can catalytically break theN2 molecule at ambient temperature and low pressures. We follow the nitrogen reacting with the rare earth to form a rare earth nitride in real time via conductance measurements. By comparing the N2 cracking, reaction, and diffusion at both a RE and a REN surface we propose a pressure range in which the nitrogen content in SmN can be manipulated and conclude that the nitrogen in the top monolayers in a SmN film is mobile.  In the investigation of GdN and SmN, we find that the conductivity of SmN follows the same behaviour as GdN when changing the N2 pressure during deposition. We follow the conductance change in SmN during deposition and propose a minimum thickness for room temperature deposited SmN films for consistent conductivity measurements. We report structural and magnetic changes in GdN which has been exposed to N-ions. We also present data on materials making ohmic contact to both GdN and SmN.  Finally, we report the manufacturing and investigation of magnetic tunnel junctions using GdN and SmN electrodes with a GaN tunnel barrier. A new pattern design produces 20 devices, in a single deposition, which show consistent behaviour and expands on previous work on this topic. The main focus of the investigation is the J-V characteristics of the magnetic tunnel junctions which shows clear non-linear behaviour arising from tunnelling through the GaN. A Simmons fit to the J-V characteristics yields a barrier height of 0:8 eV and barrier thicknesses close to experimentally determined thicknesses. The J-V characteristics are investigated with changing temperature and changing applied magnetic field to investigate the effect of the ferromagnetism of the GdN and SmN electrodes. The tunnel magnetoresistance (TMR) of the devices show two contributions, a low-temperature TMR contribution and a 50K TMR contribution, and the maximum TMR for all devices are between 100% to 600%. The devices can withstand current densities up to 4000A/cm² and voltages up to 5V which is promising for a wide range of future applications.</p>


2021 ◽  
Vol 118 (4) ◽  
pp. 042411
Author(s):  
Thomas Scheike ◽  
Qingyi Xiang ◽  
Zhenchao Wen ◽  
Hiroaki Sukegawa ◽  
Tadakatsu Ohkubo ◽  
...  

2007 ◽  
Vol 310 (2) ◽  
pp. 2006-2008 ◽  
Author(s):  
H. Kijima ◽  
T. Ishikawa ◽  
T. Marukame ◽  
K.-I. Matsuda ◽  
T. Uemura ◽  
...  

2013 ◽  
Vol 87 (9) ◽  
Author(s):  
Witold Skowroński ◽  
Maciej Czapkiewicz ◽  
Marek Frankowski ◽  
Jerzy Wrona ◽  
Tomasz Stobiecki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document