scholarly journals Effect of Chromium Content on Heat Treatment Behavior of Multi-Alloyed White Cast Iron for Abrasive Wear Resistance

2019 ◽  
Vol 60 (2) ◽  
pp. 346-354 ◽  
Author(s):  
Jatupon Opapaiboon ◽  
Mawin Supradist Na Ayudhaya ◽  
Prasonk Sricharoenchai ◽  
Sudsakorn Inthidech ◽  
Yasuhiro Matsubara
2015 ◽  
Vol 56 (5) ◽  
pp. 720-725 ◽  
Author(s):  
Jatupon Opapaiboon ◽  
Prasonk Sricharoenchai ◽  
Sudsakorn Inthidech ◽  
Yasuhiro Matsubara

2013 ◽  
Vol 58 (3) ◽  
pp. 973-976 ◽  
Author(s):  
D. Kopyciński ◽  
M. Kawalec ◽  
A. Szczęsny ◽  
R. Gilewski ◽  
S. Piasny

Abstract The resistance of castings to abrasive wear depends on the cast iron abrasive hardness ratio. It has been anticipated that the white cast iron structure will be changed by changing the type of metal matrix and the type of carbides present in this matrix, which will greatly expand the application area of castings under the harsh operating conditions of abrasive wear. Detailed metallographic analysis was carried out to see the structure obtained in selected types of white cast iron, i.e. with additions of chromium and vanadium. The study compares the results of abrasive wear resistance tests performed on the examined types of cast iron.


2017 ◽  
Vol 26 (46) ◽  
Author(s):  
Oscar Fabián Higuera-Cobos ◽  
Jeison Bucurú-Vasco ◽  
Andrés Felipe Loaiza-Patiño ◽  
Mónica Johanna Monsalve-Arias ◽  
Dairo Hernán Mesa-Grajales

This paper studies the influence of variables such as holding temperatures and times during austempering of High Chromium White Cast Iron (HCWCI), with the following chemical composition: Cr 25 %, C 3 %, Si 0.47 %, Mn 0.74 % and Mo 1.02 %. The aim of the austempering was to modify the percentage of retained austenite and its correlation to abrasive wear resistance under different conditions.Microhardness tests, SEM-EDS and XRD were performed to determine mechanical properties, chemical composition, and type of carbides and microstructures present, respectively. The tests complied with the ASTM G-65 standard. Results showed that the best performance against abrasion was achieved for austempering at 450 ºC with holding time of 6 hours.


2014 ◽  
Vol 14 (1) ◽  
pp. 63-66 ◽  
Author(s):  
D. Kopyciński ◽  
S. Piasny ◽  
M. Kawalec ◽  
A. Madizhanova

Abstract The resistance of cast iron to abrasive wear depends on the metal abrasive hardness ratio. For example, hardness of the structural constituents of the cast iron metal matrix is lower than the hardness of ordinary silica sand. Also cementite, the basic component of unalloyed white cast iron, has hardness lower than the hardness of silica. Some resistance to the abrasive effect of the aforementioned silica sand can provide the chromium white cast iron containing in its structure a large amount of (Cr, Fe)7C3 carbides characterised by hardness higher than the hardness of the silica sand in question. In the present study, it has been anticipated that the white cast iron structure will be changed by changing the type of metal matrix and the type of carbides present in this matrix, which will greatly expand the application area of castings under the harsh operating conditions of abrasive wear. Moreover, the study compares the results of abrasive wear resistance tests performed on the examined types of cast iron. Tests of abrasive wear resistance were carried out on a Miller machine. Samples of standard dimensions were exposed to abrasion in a double to-and-fro movement, sliding against the bottom of a trough filled with an aqueous abrasive mixture containing SiC + distilled water. The obtained results of changes in the sample weight were approximated with a power curve and shown further in the study.


2019 ◽  
Vol 61 (7) ◽  
pp. 690-694
Author(s):  
Tanju Teker ◽  
S. Osman Yilmaz ◽  
Erhan Kerkut

Author(s):  
A. P. Chernysh

In this article, the plant for heat treatment of grain material, namely perfo-rated spiral operating part, developed by the authors was chosen as the object of improving the wear resistance. The research was conducted in the laboratory of the Technology of Metals and Machinery Repair Department of Kemerovo State Agricultural Institute. The aim of the research is to select the most appropriate method of hardening the functional surface of perforated spiral operating part with the use of low-cost anti-wear coatings. The basis for choosing the method of surfacing the coating was the use of a method of forming the technological repair units (TRU), which allowed electric spark treatment with unalloyed white cast iron.


2017 ◽  
Vol 47 (11) ◽  
pp. 705-709 ◽  
Author(s):  
K. N. Vdovin ◽  
N. A. Feoktistov ◽  
D. A. Gorlenko ◽  
V. P. Chernov ◽  
I. B. Khrenov

Sign in / Sign up

Export Citation Format

Share Document