Archives of Foundry Engineering
Latest Publications


TOTAL DOCUMENTS

692
(FIVE YEARS 0)

H-INDEX

9
(FIVE YEARS 0)

Published By De Gruyter Open Sp. Z O.O.

2299-2944, 1897-3310

2017 ◽  
Vol 17 (4) ◽  
pp. 195-199 ◽  
Author(s):  
R. Mola ◽  
E. Stępień ◽  
M. Cieślik

AbstractThe modified surface layers of Mg enriched with Al and Si were fabricated by thermochemical treatment. The substrate material in contact with an Al + 20 wt.% Si powder mixture was heated to 445°C for 40 or 60 min. The microstructure of the layers was examined by OM and SEM. The chemical composition of the layer and the distribution of elements were determined by energy dispersive X-ray spectroscopy (EDS). The experimental results show that the thickness of the layer is dependent on the heating time. A much thicker layer (1 mm) was obtained when the heating time was 60 min than when it was 40 min (600 μm). Both layers had a non-homogeneous structure. In the area closest to the Mg substrate, a thin zone of a solid solution of Al in Mg was detected. It was followed by a eutectic with Mg17Al12and a solid solution of Al in Mg. The next zone was a eutectic with agglomerates of Mg2Si phase particles; this three-phase structure was the thickest. Finally, the area closest to the surface was characterized by dendrites of the Mg17Al12phase. The microhardness of the modified layer increased to 121-236 HV as compared with 33-35 HV reported for the Mg substrate.


2017 ◽  
Vol 17 (4) ◽  
pp. 73-78 ◽  
Author(s):  
F. Kahrıman ◽  
M. Zeren

Abstract In this study, Al-0.80Mg-0.85Si alloy was modified with the addition of 0.3 wt.-% zirconium and the variation of microstructural features and mechanical properties were investigated. In order to produce the billets, vertical direct chill casting method was used and billets were homogenized at 580 °C for 6 h. Homogenized billets were subjected to aging practice following three stages: (i) solution annealing at 550 °C for 3 h, (ii) quenching in water, (iii) aging at 180 °C between 0 and 20 h. The hardness measurements were performed for the alloys following the aging process. It was observed that peak hardness value of Al-0.80Mg-0.85Si alloy increased with the addition of zirconium. This finding was very useful to obtain aging parameters for the extruded hollow profiles which are commonly used in automotive industry. Standard tensile tests were applied to aged profiles at room temperature and the results showed that modified alloy had higher mechanical properties compared to the non-modified alloy.


2017 ◽  
Vol 17 (4) ◽  
pp. 67-72
Author(s):  
D. Gurgul ◽  
A. Burbelko ◽  
T. Wiktor

AbstractThe paper presents validation tests for method which is used for the evaluation of the statistical distribution parameters for 3D particles’ diameters. The tested method, as source data, uses chord sets which are registered from a random cutting plane placed inside a sample space. In the sample space, there were individually generated three sets containing 3D virtual spheres. Each set had different Cumulative Distribution Function (CDF3) of the sphere diameters, namely: constant radius, normal distribution and bimodal distribution as a superposition of two normal distributions. It has been shown that having only a chord set it is possible, by using the tested method, to calculate the mean value of the outer sphere areas. For the sets of data, a chord method generates quite large errors for around 10% of the smallest nodules in the analysed population. With the increase of the nodule radii, the estimation errors decrease. The tested method may be applied to foundry issues e.g. for the estimation of gas pore sizes in castings or for the estimation of nodule graphite sizes in ductile cast iron.


2017 ◽  
Vol 17 (4) ◽  
pp. 13-18
Author(s):  
A. Bajwoluk ◽  
P. Gutowski

Abstract The results of research on the effect of the type of cooling agent used during heat treatment and thermal-chemical treatment on the formation of temperature gradient and stress-deformation distribution in cast pallets, which are part of furnace accessories used in this treatment, are disclosed. During operation, pallets are exposed to the effect of the same conditions as the charge they are carrying. Cyclic thermal loads are the main cause of excessive deformations or cracks, which after some time of the cast pallet operation result in its withdrawal due to damage. One of the major causes of this damage are stresses formed under the effect of temperature gradient in the unevenly cooled pallet construction. Studies focused on the analysis of heat flow in a charge-loaded pallet, cooled by various cooling agents characterized by different heat transfer coefficients and temperature. Based on the obtained temperature distribution, the stress distribution and the resulting deformation were examined. The results enabled drawing relevant conclusions about the effect of cooling conditions on stresses formed in the direction of the largest temperature gradient.


2017 ◽  
Vol 17 (4) ◽  
pp. 103-108 ◽  
Author(s):  
K. Łyczkowska ◽  
J. Adamiec ◽  
R. Jachym ◽  
K. Kwieciński

Abstract Nickel-based alloys are widely used in industries such as the aircraft industry, chemicals, power generation, and others. Their stable mechanical properties in combination with high resistance to aggressive environments at high temperatures make these materials suitable for the production of components of devices and machines intended for operation in extremely difficult conditions, e.g. in aircraft engines. This paper presents the results of thermal and mechanical tests performed on precision castings made of the Inconel 713C alloy and intended for use in the production of low pressure turbine blades. The tests enabled the determination of the nil strength temperature (NST), the nil ductility temperature (NDT), and the ductility recovery temperature (DRT) of the material tested. Based on the values obtained, the high temperature brittleness range (HTBR) and the hot cracking resistance index were determined. Metallographic examinations were conducted in order to describe the cracking mechanisms. It was found that the main cracking mechanism was the partial melting of grains and subsequently the rupture of a thin liquid film along crystal boundaries as a result of deformation during crystallisation. Another cracking mechanism identified was the DDC (Ductility Dip Cracking) mechanism. The results obtained provide a basis for improving precision casting processes for aircraft components and constitute guidelines for designers, engineers, and casting technologists.


2017 ◽  
Vol 17 (4) ◽  
pp. 133-136 ◽  
Author(s):  
R. Przeliorz ◽  
J. Piątkowski

Abstract The paper presents results of calorimetric studies of foundry nickel superalloys: IN100, IN713C, Mar-M247 and ŻS6U. Particular attention was paid to determination of phase transitions temperatures during heating and cooling. The samples were heated to a temperature of 1500°C with a rate of 10°C⋅min-1 and then held at this temperature for 5 min. After a complete melting, the samples were cooled with the same rate. Argon with a purity of 99.99% constituted the protective atmosphere. The sample was placed in an alundum crucible with a capacity of 0.45 cm3. Temperature and heat calibration was carried out based on the melting point of high-purity Ni. The tests were carried out by the differential scanning calorimetry (DSC) using a Multi HTC high-temperature calorimeter from Setaram. Based on the DSC curves, the following temperatures were determined: solidus and liquidus, dissolution and precipitation of the γ’ phase, MC carbides and melting of the γ’/γ eutectic. In the temperature range of 100-1100°C, specific heat capacity of the investigated superalloys was determined. It was found that the IN713C and IN100 alloys exhibit a higher specific heat while compared to the Mar-M247 and ŻS6U alloys.


2017 ◽  
Vol 17 (4) ◽  
pp. 109-114 ◽  
Author(s):  
J. Meško ◽  
R. Nigrovič ◽  
A. Zrak

Abstract This article deals with the technology and principles of the laser cutting of ductile cast iron. The properties of the CO2 laser beam, input parameters of the laser cutting, assist gases, the interaction of cut material and the stability of cutting process are described. The commonly used material (nodular cast iron - share of about 25% of all castings on the market) and the method of the laser cutting of that material, including the technological parameters that influence the cutting edge, are characterized. Next, the application and use of this method in mechanical engineering practice is described, focusing on fixing and renovation of mechanical components such as removing the inflow gate from castings with the desired quality of the cut, without the further using of the chip machining technology. Experimental samples from the nodular cast iron were created by using different technological parameters of laser cutting. The heat affected zone (HAZ), its width, microstructure and roughness parameter Pt was monitored on the experimental samples (of thickness t = 13 mm). The technological parameters that were varied during the experiments included the type of assist gases (N2 and O2), to be more specific the ratio of gases, and the cutting speed, which ranged from 1.6 m/min to 0.32 m/min. Both parameters were changed until the desired properties were achieved.


2017 ◽  
Vol 17 (4) ◽  
pp. 200-206
Author(s):  
I. Olejarczyk-Wożeńska ◽  
H. Adrian ◽  
B. Mrzygłód ◽  
M. Głowacki

AbstractA mathematical model of austenite - bainite transformation in austempered ductile cast iron has been presented. The model is based on a model developed by Bhadeshia [1, 2] for modelling the bainitic transformation in high-silicon steels with inhibited carbide precipitation. A computer program has been developed that calculates the incubation time, the transformation time at a preset temperature, the TTT diagram and carbon content in unreacted austenite as a function of temperature. Additionally, the program has been provided with a module calculating the free energy of austenite and ferrite as well as the maximum driving force of transformation. Model validation was based on the experimental research and literature data. Experimental studies included the determination of austenite grain size, plotting the TTT diagram and analysis of the effect of heat treatment parameters on the microstructure of ductile iron. The obtained results show a relatively good compatibility between the theoretical calculations and experimental studies. Using the developed program it was possible to examine the effect of austenite grain size on the rate of transformation.


2017 ◽  
Vol 17 (4) ◽  
pp. 147-150 ◽  
Author(s):  
T. Skrzypczak ◽  
E. Węgrzyn-Skrzypczak ◽  
L. Sowa

Abstract The paper presents an approach of numerical modelling of alloy solidification in permanent mold and transient heat transport between the casting and the mold in two-dimensional space. The gap of time-dependent width called "air gap", filled with heat conducting gaseous medium is included in the model. The coefficient of thermal conductivity of the gas filling the space between the casting and the mold is small enough to introduce significant thermal resistance into the heat transport process. The mathematical model of heat transport is based on the partial differential equation of heat conduction written independently for the solidifying region and the mold. Appropriate solidification model based on the latent heat of solidification is also included in the mathematical description. These equations are supplemented by appropriate initial and boundary conditions. The formation process of air gap depends on the thermal deformations of the mold and the casting. The numerical model is based on the finite element method (FEM) with independent spatial discretization of interacting regions. It results in multi-mesh problem because the considered regions are disconnected.


2017 ◽  
Vol 17 (4) ◽  
pp. 97-102
Author(s):  
K. Łukasik ◽  
P. Nawrocki ◽  
J. Misiak ◽  
D. Myszka

Abstract The paper attempts to analyze distortions of cast iron and cast steel rings, after heat treatment cycles. The factors influencing distortion are: chemical composition of material, sample geometry, manufacturing process, hardenability, temperature and heat treatment method. Standard distortion tests are performed on C-ring samples. We selected a ring-model, which approximate the actual part, so that findings apply to gear rings. Because distortion depends on so many variables, this study followed strictly defined procedures. The research was started by specifying the appropriate geometry of the samples. Then, the heat treatment was conducted and samples were measured again. The obtained results allow to determine the value of the resulting distortion and their admissibility. The research will be used to evaluate the possibility of using the material to produce parts of equipment operated under extreme load conditions.


Sign in / Sign up

Export Citation Format

Share Document