Analysis of Sandwich DCB Test Specimen Using Vlasov Foundation Model

2017 ◽  
Vol 65 (1) ◽  
pp. 32-39
Author(s):  
Keishiro YOSHIDA
1970 ◽  
Vol 23 (02) ◽  
pp. 202-210 ◽  
Author(s):  
R Bishop ◽  
H Ekert ◽  
G Gilchrist ◽  
E Shanbrom ◽  
L Fekete

SummaryA new fibrin plate technic for evaluating components of the fibrinolytic system has been developed. It provides quick, accurate, and easily interpreted results for the fibrinolytic profile. The standardized human plasminogen-free fibrin plates can be produced in bulk and stored for prolonged periods of time. A test specimen placed in a well punched in the buffered agarose gel diffuses into the agar and lyses the fibrin clot, forming a clear reaction zone. The zone diameter is directly proportional to the log of the percent concentration of available fibrinolytic enzyme in the specimen. The plates may be used to quantitate total plasminogen, and estimate available plasmin and active plasmin. A good correlation between results obtained using these fibrin plates and caseinolytic methods was found. Performance and interpretation of tests of fibrinolysis done on these new fibrin plates indicate that it may be the most sensitive technic available for clinical laboratory work.


2013 ◽  
Vol 61 (3) ◽  
pp. 64-70
Author(s):  
Shunichiro NAKAMURA ◽  
Terutake MATSUBARA ◽  
Yoshihiro TAKAO ◽  
Wen-Xue WANG
Keyword(s):  

Author(s):  
Gibin Gil ◽  
Sujin Lee

ABSTRACT In radial tires, belt structure plays a role of minimizing the lateral deflection of carcass, which has a significant influence on the cornering and wear properties of a tire. The deflection of carcass affects the magnitude of tread block deformation when the tire is under the slip angle. As a result, it can change the cornering stiffness characteristics of the tire, especially when the vertical load is high. During tire development, a tire design engineer tries to find the optimal belt ply angle that satisfies the various performance requirements simultaneously, but it is not an easy task because the effect of belt angle change is different depending on the size of the tire. There have been many attempts to construct a mathematical model that represents the structural properties of the belt package, including the string-based model and the beam on elastic foundation model. But, in many cases, only the in-plane bending of belt is considered and the shear deformation is not taken into consideration. In this study, the effect of belt angle change on belt stiffness is analyzed using a mathematical model based on the Timoshenko beam theory. This model can account for the in-plane bending and shear deformation of the belt structure at the same time. The results of the analysis show how the contribution of bending and shear is changed depending on a tire design parameter, herein the belt cord angle. The effect of belt ply angle change on cornering stiffness is investigated by means of the brush model including belt flexibility. The prediction by the brush model is compared with the measurement using a Flat-trac machine, and the validity of the model is discussed.


Sign in / Sign up

Export Citation Format

Share Document