angle change
Recently Published Documents


TOTAL DOCUMENTS

164
(FIVE YEARS 47)

H-INDEX

10
(FIVE YEARS 3)

2022 ◽  
pp. 279-303
Author(s):  
Kriti Mishra ◽  
Raji Thomas

Foot drop is a common disabling condition following stroke. It has been conventionally managed using an ankle foot orthosis (AFO). An alternate rehabilitation option is the functional electrical stimulation (FES) systems that has undergone numerous improvisations over past few decades to make it more efficient and user friendly. This chapter aims to evaluate a prototype low-cost FES device in an Indian rehabilitation set-up to match the patients' cultural and socio-economic needs. It illustrates a pilot study designed to test the orthotic and clinical efficacy of the device in terms of dynamic ankle angle change during ambulation and comparing the walking speed and endurance with the AFO. A significant change with nearly two-thirds of normal ankle angle change during swing phase of the gait cycle was observed with nearly equivalent orthotic effects in terms of walking endurance and speed. In terms of receptivity, the device received a mixed response from the patients regarding its effectiveness as an orthosis.


2021 ◽  
Vol 13 (3) ◽  
pp. 37-44
Author(s):  
Dumitru Deleanu ◽  
◽  
Constantin Louis Dumitrache ◽  

Parametric roll on ships is an auto-parametric resonance phenomenon whose onset causes a sudden rise in roll oscillations leading to dangerous situations for the ship, the cargo and the crew. In the paper, we have numerically investigated the effect of modifying the heading angle on the roll amplitudes. We followed three strategies. In the first, we allowed the heading angle to decrease with a constant angular acceleration so that the encounter frequency has left the dangerous region of the resonance. However, this option involves changing the course of the ship in the long run, which is of course a shortcoming. In the second strategy, we changed the heading angle up and down around an average value that generates large roll amplitudes, by using different periodic sinusoidal or triangular profiles. The beneficial effect of this action is to keep the course, even if at the cost of a momentary delay. We noticed that both control techniques listed above generally managed to significantly reduce the roll amplitudes if certain thresholds have been exceeded. As a last idea for decreasing the parametric roll amplitudes, we used the combined effect of ship forward speed and heading angle change.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Qian Wang ◽  
Ruixin Song ◽  
Junpeng Wang ◽  
Cuicui Xu ◽  
Gang Zhou ◽  
...  

To explore the dustfall effect of combined nozzles used in a fully mechanized mining face, Phase Doppler Interferometry (PDI) system was used to test 6 types of high-efficiency atomizer under 8 MPa. A new nozzle group of nozzles 2#, 3#, and 5# is selected by atomization experiment. The atomization experiment and field application test of the preferred nozzle are performed. The experiment and field application results show that, with the spray pressure of 8 MPa, when the distance in the nozzle group is 200 mm and the angle change is 10 degrees, the atomization effect is the best. Under the optimal parameters, the average dustfall rates of the entire and respirable dust are 81.82% and 79.96%, respectively, which are 23.49% and 20.75% higher than those of the traditional shearer.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Jeremy W. Mortimer ◽  
Hamad Alsaykhan ◽  
Subashan Vadibeler ◽  
Philippa A. Rust ◽  
Jennifer Z. Paxton

Abstract Background The enthesis possesses morphological adaptations across the soft-hard tissue junction which are not fully restored during surgical avulsion repairs. This loss of anatomical structure, highly related to function, contributes to poor clinical outcomes. Investigating the native macro- and micro-structure of a specific enthesis can provide functional and biomechanical insights to develop specialised, novel tissue-engineered therapeutic options and potentially improve current surgical treatments for avulsion injuries. Methods This study examines the anatomy and histomorphology of the flexor digitorum profundus (FDP) enthesis in 96 fresh-frozen human cadaveric fingers, quantitatively and qualitatively analyzing the shape, size, angle of tendon fibres and histological architecture, and explores differences in sex, finger and distance along the enthesis using linear mixed effects models. Results Macroscopically, results showed a consistent trapezoidal insertion shape of 29.29 ± 2.35 mm2 mean surface area, but with significant morphometric size differences influenced primarily by the smaller dimensions of the little finger. Microscopically, a fibrocartilaginous enthesis was apparent with a 30.05 ± 0.72o mean angle of inserting tendon fibres, although regional variation in fibrocartilage and the angle change of tendon fibres before insertion existed. Conclusions The implication of these findings on native and specific FDP enthesis function is discussed whilst providing recommendations for optimal FDP enthesis recreation for interfacial tissue engineers and hand surgeons. The study emphasizes the importance of region-specific knowledge whilst also describing methods applicable to assessing any soft tissue insertion.


2021 ◽  
Vol 11 (22) ◽  
pp. 11048
Author(s):  
Rui Ouyang ◽  
Duo Wang ◽  
Longxu Jin ◽  
Xingxiang Zhang

Common dispersive-type spectroscopic instruments include prism-type and grating-type, usually using a single dispersive element. The continuous imaging band is always limited by the dispersion angle. When it is necessary to image two wavebands with an ultra-spectral resolution that are far apart, the imaging is difficult due to the large diffraction angle. To broaden the spectral coverage of the imaging spectrometer, in this paper, we propose a dual-gratings imaging spectrometer with two independently rotating gratings. In this proposed system, two very far apart wavelength bands can be imaged in the adjacent areas by adjusting the angle of the dual gratings. This greatly expands the spectral coverage of the imaging spectrometer. Currently, the only application area considered for this instrument is solar applications. In this article, we present the optical system of the dual-gratings imaging spectrometer, illustrate several advantages of the new structure, and discuss new problems caused by the dual-gratings, which are referred to as overlap between two spectra and double image offset. We deduced the calculation process of the dual grating rotation angle, the relationship between the final acquired image and the slit, the relationship between the angle change between the dual gratings and the double image offset, and the relationship between the MTF upper limit reduction and the spatial frequency. This article also summarizes the shortcomings of this structure and studies the applicable fields under these shortcomings. At last, we simulate a dual-gratings imaging spectrometer system, compare this scheme with two traditional schemes, and conclude that this instrument has certain practical significance.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6187
Author(s):  
Zhihua Lin ◽  
Zhitao Zuo ◽  
Wenbin Guo ◽  
Jianting Sun ◽  
Qi Liang ◽  
...  

The impeller backside cavity (IBC) is a unique structure of centrifugal compressor in compressed air energy storage (CAES) systems, which affects the aerodynamic performance of centrifugal compressor, and the angle change of the downstream coupled adjustable vaned diffusers (AVDs) will affect the flow field inside the cavity and compressor performance. This paper relies on the closed test facility of the high-power intercooling compressor to measure static pressure and static temperature at different radii on the static wall of the IBC. The coupling relationship between the IBC and compressor under variable operating conditions is analyzed, and the influence of AVDs on the internal flow in IBC is studied. The results show that static pressure and static temperature rise along the direction of increasing radius, but static temperature drops near the coupling between the impeller outlet and the cavity inlet. Under AVDs’ design angle, static pressure and static temperature at each point, static pressure loss and static temperature loss in the direction of decreasing radius all increase as the flow decreases. Under variable AVDs’ angles, static pressure and static temperature will change differently, and respective loss will also be different.


2021 ◽  
Vol 11 (19) ◽  
pp. 8859
Author(s):  
Hang Ma ◽  
Yuxue Ge ◽  
Bifeng Song ◽  
Yang Pei

In this study, a design scheme for a high-aspect-ratio bionic multi-section variable-sweep wing unmanned aerial vehicle (UAV) that utilizes the reverse coordinated change in the sweep angle of the inner and outer wing sections is proposed, which improves the aerodynamic performance and realizes the self-trim compensation of the wing’s centroid. According to the layout characteristics of this type of UAV, a reasonable distribution design of the wingspan ratio of the inner and outer sections is explored, to reduce the impact of aerodynamic center movement and moment of inertia change. The calculation and analysis results show that the coordinated variable-sweep scheme can significantly improve the influence of sweep angle change on the longitudinal static stability margin of UAVs with a high aspect ratio. The coordinated sweep angle change in the inner and outer wing sections can not only reduce the drag during high-speed flight, but also play a significant role in improving the performance of the aircraft at different stages in the mission profile. Appropriately increasing the wingspan proportion of the inner section can reduce the trim resistance of the V-tail, reduce the thrust of the engine, and increase the range and duration of the UAV. From the perspective of stability change, the multi-section variable-sweep wing UAV with a wingspan ratio of the inner and outer sections that is between 1.41 and 1.78 has better dynamic stability performance. Among them, the UAV with a wingspan ratio of the inner and outer sections that is equal to 1.41 has better longitudinal stability performance, while the UAV with a wingspan ratio of the inner and outer sections that is equal to 1.78 has better lateral/directional stability performance.


Author(s):  
Frank A. Perez ◽  
Bong J. Walsh

In recent litigation Human Factors Experts have been misapplying the analysis of the looming threshold for offset motions. Looming (or image size expansion) analysis is appropriate for a rapid direct approach to an object (i.e., rear-end collisions) but is inappropriate for offset motions. Typically, looming threshold analysis is applied to nighttime driving when approaching a slow-moving or stopped vehicle presenting no visual cues other than rear tail lights. This paper lays out the foundation for looming, derives the accepted mathematical equation, and compares it to the rate of visual angle change, which is more applicable to offset motions. An appropriate offset looming threshold equation is derived. In addition, a special case of collision due to looming combined with lateral motion is addressed which has historical significance in open water vessel navigation.


Sign in / Sign up

Export Citation Format

Share Document