scholarly journals Flight Simulator Study of an Advanced Stability and Control Augmentation System for a Hingeless Rotor Helicopter.

1997 ◽  
Vol 45 (519) ◽  
pp. 206-215
Author(s):  
Katsuyuki MIYAJIMA
Aerospace ◽  
2020 ◽  
Vol 7 (5) ◽  
pp. 51 ◽  
Author(s):  
Clayton Humphreys-Jennings ◽  
Ilias Lappas ◽  
Dragos Mihai Sovar

The Blended Wing Body (BWB) configuration is considered to have the potential of providing significant advantages when compared to conventional aircraft designs. At the same time, numerous studies have reported that technical challenges exist in many areas of its design, including stability and control. This study aims to create a novel BWB design to test its flying and handling qualities using an engineering flight simulator and as such, to identify potential design solutions which will enhance its controllability and manoeuvrability characteristics. This aircraft is aimed toward the commercial sector with a range of 3000 nautical miles, carrying 200 passengers. The BWB design was flight tested at an engineering flight simulator to first determine its static stability through a standard commercial mission profile, and then to determine its dynamic stability characteristics through standard dynamic modes. Its flying qualities suggested its stability with a static margin of 8.652% of the mean aerodynamic chord (MAC) and consistent response from the pilot input. In addition, the aircraft achieved a maximum lift-to-drag ratio of 28.1; a maximum range of 4,581 nautical miles; zero-lift drag of 0.005; while meeting all the requirements of the dynamic modes.


Author(s):  
Clayton Humphreys-Jennings ◽  
Ilias Lappas ◽  
Dragos Mihai Sovar

The Blended Wing Body (BWB) configuration is considered to have the potential of providing significant advantages when compared to conventional aircraft designs. At the same time, numerous studies have reported that technical challenges exist in many areas of its design, including stability and control. This study aims to create a novel BWB design to test its flying and handling qualities using an engineering flight simulator and as such, to identify potential design solutions which will enhance its controllability and manoeuvrability characteristics. This aircraft is aimed toward the commercial sector with a range of 3,000 nautical miles, carrying a payload of 20,000kg. In the engineering flight simulator a flight test was undertaken; first, to determine the BWB design’s static stability through a standard commercial mission profile, and then to determine its dynamic stability characteristics through standard dynamic modes. Its flying qualities suggested its stability with a static margin of 8.652% of the Mean Aerodynamic Chord (MAC) and consistent response from the pilot input. In addition, the aircraft achieved a maximum lift-to-drag ratio of 28.1; a maximum range of 4,581 nautical miles; zero-lift drag of 0.005; and meeting all the requirements of the dynamic modes.


Aviation ◽  
2021 ◽  
Vol 25 (1) ◽  
pp. 22-34
Author(s):  
Kamali Chandrasekaran ◽  
Vijeesh Theningaledathil ◽  
Archana Hebbar

This paper discusses the development of a ground based variable stability flight simulator. The simulator is designed to meet the pilot training requirements on flying qualities. Such a requirement arose from a premier Flight-Testing School of the Indian Air Force. The simulator also provides a platform for researchers and aerospace students to understand aircraft dynamics, conduct studies on aircraft configuration design, flight mechanics, guidance & control and to evaluate autonomous navigation algorithms. The aircraft model is built using open source data. The simulator is strengthened with optimization techniques to configure variable aircraft stability and control characteristics to fly and evaluate the various aspects of flying qualities. The methodology is evaluated through a series of engineer and pilot-in-the-loop simulations for varying aircraft stability conditions. The tasks chosen are the proven CAT A HUD tracking tasks. The simulator is also reconfigurable to host an augmented fighter aircraft that can be evaluated by the test pilot team for the functional integrity as a fly-through model.


1997 ◽  
Author(s):  
Zhongjun Wang ◽  
Zhidai He ◽  
C. Lan ◽  
Zhongjun Wang ◽  
Zhidai He ◽  
...  

Author(s):  
Ashraf Omran ◽  
Mohamed Elshabasy ◽  
Wael Mokhtar ◽  
Brett Newman ◽  
Mohamed Gharib

Author(s):  
Mathias Stefan Roeser ◽  
Nicolas Fezans

AbstractA flight test campaign for system identification is a costly and time-consuming task. Models derived from wind tunnel experiments and CFD calculations must be validated and/or updated with flight data to match the real aircraft stability and control characteristics. Classical maneuvers for system identification are mostly one-surface-at-a-time inputs and need to be performed several times at each flight condition. Various methods for defining very rich multi-axis maneuvers, for instance based on multisine/sum of sines signals, already exist. A new design method based on the wavelet transform allowing the definition of multi-axis inputs in the time-frequency domain has been developed. The compact representation chosen allows the user to define fairly complex maneuvers with very few parameters. This method is demonstrated using simulated flight test data from a high-quality Airbus A320 dynamic model. System identification is then performed with this data, and the results show that aerodynamic parameters can still be accurately estimated from these fairly simple multi-axis maneuvers.


Author(s):  
Dongyu Li ◽  
Haoyong Yu ◽  
Keng Peng Tee ◽  
Yan Wu ◽  
Shuzhi Sam Ge ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document