scholarly journals Downregulation of GLP-1 and GIP Receptor Expression by Hyperglycemia: Possible Contribution to Impaired Incretin Effects in Diabetes

Diabetes ◽  
2007 ◽  
Vol 56 (6) ◽  
pp. 1551-1558 ◽  
Author(s):  
G. Xu ◽  
H. Kaneto ◽  
D. R. Laybutt ◽  
V. F. Duvivier-Kali ◽  
N. Trivedi ◽  
...  
2021 ◽  
Author(s):  
Mette Q. Ludwig ◽  
Petar V. Todorov ◽  
Kristoffer L. Egerod ◽  
David P. Olson ◽  
Tune H. Pers

The dorsal vagal complex (DVC) in the hindbrain, composed of the area postrema, nucleus of the solitary tract and dorsal motor nucleus of the vagus, plays a critical role in modulating satiety. The incretins glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) act directly in the brain to modulate feeding, and receptors for both are expressed in the DVC. Given the impressive clinical responses to pharmacologic manipulation of incretin signaling, understanding the central mechanisms by which incretins alter metabolism and energy balance are of critical importance. Here, we review recent single-cell approaches used to detect molecular signatures of GLP-1 and GIP receptor-expressing cells in the DVC. In addition, we discuss how current advancements in single-cell transcriptomics, epigenetics, spatial transcriptomics, and circuit mapping techniques have the potential to further characterize incretin circuits in the hindbrain.


2021 ◽  
Author(s):  
Mette Q. Ludwig ◽  
Petar V. Todorov ◽  
Kristoffer L. Egerod ◽  
David P. Olson ◽  
Tune H. Pers

The dorsal vagal complex (DVC) in the hindbrain, composed of the area postrema, nucleus of the solitary tract and dorsal motor nucleus of the vagus, plays a critical role in modulating satiety. The incretins glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) act directly in the brain to modulate feeding, and receptors for both are expressed in the DVC. Given the impressive clinical responses to pharmacologic manipulation of incretin signaling, understanding the central mechanisms by which incretins alter metabolism and energy balance are of critical importance. Here, we review recent single-cell approaches used to detect molecular signatures of GLP-1 and GIP receptor-expressing cells in the DVC. In addition, we discuss how current advancements in single-cell transcriptomics, epigenetics, spatial transcriptomics, and circuit mapping techniques have the potential to further characterize incretin circuits in the hindbrain.


2011 ◽  
Vol 25 (S1) ◽  
Author(s):  
Lisa M Berglund ◽  
Olga Kotova ◽  
Isabel Goncalves ◽  
Timothy J Kieffer ◽  
Valeriya Lyssenko ◽  
...  

2021 ◽  
Author(s):  
Mette Q. Ludwig ◽  
Petar V. Todorov ◽  
Kristoffer L. Egerod ◽  
David P. Olson ◽  
Tune H. Pers

The dorsal vagal complex (DVC) in the hindbrain, composed of the area postrema, nucleus of the solitary tract and dorsal motor nucleus of the vagus, plays a critical role in modulating satiety. The incretins glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) act directly in the brain to modulate feeding, and receptors for both are expressed in the DVC. Given the impressive clinical responses to pharmacologic manipulation of incretin signaling, understanding the central mechanisms by which incretins alter metabolism and energy balance are of critical importance. Here, we review recent single-cell approaches used to detect molecular signatures of GLP-1 and GIP receptor-expressing cells in the DVC. In addition, we discuss how current advancements in single-cell transcriptomics, epigenetics, spatial transcriptomics, and circuit mapping techniques have the potential to further characterize incretin circuits in the hindbrain.


2012 ◽  
Vol 215 (3) ◽  
pp. S28
Author(s):  
Federico J. Serrot ◽  
Robert B. Dorman ◽  
Rocio Foncea ◽  
Brigitte Frohnert ◽  
Daniel B. Leslie ◽  
...  

Diabetes ◽  
2021 ◽  
pp. dbi210003
Author(s):  
Mette Q. Ludwig ◽  
Petar V. Todorov ◽  
Kristoffer L. Egerod ◽  
David P. Olson ◽  
Tune H. Pers

2001 ◽  
Vol 120 (5) ◽  
pp. A177-A177
Author(s):  
S SHARP ◽  
J YU ◽  
J GUZMAN ◽  
J XUE ◽  
H COOKE ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document