Mechanism of IGF-I-stimulated glucose transport in human adipocytes. Demonstration of specific IGF-I receptors not involved in stimulation of glucose transport

Diabetes ◽  
1989 ◽  
Vol 38 (10) ◽  
pp. 1217-1225 ◽  
Author(s):  
M. K. Sinha ◽  
C. Buchanan ◽  
N. Leggett ◽  
L. Martin ◽  
P. G. Khazanie ◽  
...  
Diabetes ◽  
1989 ◽  
Vol 38 (10) ◽  
pp. 1217-1225 ◽  
Author(s):  
M. K. Sinha ◽  
C. Buchanan ◽  
N. Leggett ◽  
L. Martin ◽  
P. G. Khazanie ◽  
...  

1990 ◽  
Vol 258 (3) ◽  
pp. E534-E542 ◽  
Author(s):  
M. K. Sinha ◽  
C. Buchanan ◽  
C. Raineri-Maldonado ◽  
P. Khazanie ◽  
S. Atkinson ◽  
...  

Insulin-like growth factor II (IGF-II) receptors have been described in rat but not in human adipocytes. In both species, IGF-II has been reported to stimulate glucose transport by interacting with the insulin receptor. In this study, we have unequivocally demonstrated the presence of IGF-II receptors in human adipocytes. 125I-labeled IGF-II specifically binds to intact adipocytes, membranes, and lectin-purified detergent solubilized extracts. Through the use of 0.5 mM disuccinimidyl suberate, 125I-IGF-II is cross-linked to a 260-kDa protein that is identified as the IGF-II receptor by displacement experiments with unlabeled IGF-II, IGF-I, and insulin and either by immunoprecipitation or by Western blot analysis with mannose 6-phosphate receptor antibodies. The concentrations of IGF-II required for half-maximal and maximal stimulation of glucose transport in human adipocytes are 35 and 100 times more than that of insulin. The possibility of IGF-II stimulating glucose transport by interacting predominantly with the insulin receptor is suggested by the following: 1) the concentration of IGF-II that inhibits half of insulin binding is only 20 times more than that of insulin; 2) the lack of an additive effect of IGF-II and insulin for maximal stimulation of glucose transport; 3) the ability of monoclonal insulin receptor antibodies to decrease glucose transport stimulated by submaximal concentrations of both IGF-II and insulin; and 4) the ability of IGF-II to stimulate insulin receptor autophosphorylation albeit at a reduced potency when compared with insulin.(ABSTRACT TRUNCATED AT 250 WORDS)


1988 ◽  
Vol 255 (2) ◽  
pp. E159-E165 ◽  
Author(s):  
M. O. Sowell ◽  
K. A. Robinson ◽  
M. G. Buse

Insulin and insulin-like growth factor I (IGF-I) stimulate glucose transport in skeletal muscle through separate receptors. The proximal postreceptor events in coupling insulin and IGF-I receptors to glucose transport have been suggested to differ. Denervation of skeletal muscle produces a postreceptor insulin resistance presumably at an early step in the signaling cascade. We examined the effects of denervation and phenylarsine oxide (PAO), an agent believed to block insulin action on transport at a postreceptor step, on insulin and IGF-I stimulated 2-deoxy-D-glucose transport in isolated solei. Denervation (24 h) produced severe IGF-I resistance without affecting IGF-I receptor number or affinity. PAO inhibited insulin and IGF-I stimulation of transport in control muscles by approximately 90 and approximately 70%, respectively. In denervated muscle PAO inhibited transport stimulation by both hormones less than in controls. Conclusions are that 1) skeletal muscle insulin and IGF-I receptors signal transport mainly through a PAO-sensitive mechanism, but IGF-I's action involves a larger PAO-resistant component; 2) the denervation-induced postreceptor resistance of glucose transport to both hormones involves primarily the PAO-sensitive pathway.


1995 ◽  
Vol 144 (2) ◽  
pp. 147-151 ◽  
Author(s):  
Lesley Heseltine ◽  
Judith M. Webster ◽  
Roy Taylor

Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3831
Author(s):  
Wiem Haj Ahmed ◽  
Nathalie Boulet ◽  
Anaïs Briot ◽  
Barry J. Ryan ◽  
Gemma K. Kinsella ◽  
...  

Caffeine is a plant alkaloid present in food and beverages consumed worldwide. It has high lipid solubility with recognized actions in the central nervous system and in peripheral tissues, notably the adipose depots. However, the literature is scant regarding caffeine’s influence on adipocyte functions other than lipolysis, such as glucose incorporation into lipids (lipogenesis) and amine oxidation. The objective of this study was to explore the direct effects of caffeine and of isobutylmethylxanthine (IBMX) on these adipocyte functions. Glucose transport into fat cells freshly isolated from mice, rats, or humans was monitored by determining [3H]-2-deoxyglucose (2-DG) uptake, while the incorporation of radiolabeled glucose into cell lipids was used as an index of lipogenic activity. Oxidation of benzylamine by primary amine oxidase (PrAO) was inhibited by increasing doses of caffeine in human adipose tissue preparations with an inhibition constant (Ki) in the millimolar range. Caffeine inhibited basal and insulin-stimulated glucose transport as well as lipogenesis in rodent adipose cells. The antilipogenic action of caffeine was also observed in adipocytes from mice genetically invalidated for PrAO activity, indicating that PrAO activity was not required for lipogenesis inhibition. These caffeine inhibitory properties were extended to human adipocytes: relative to basal 2-DG uptake, set at 1.0 ± 0.2 for 6 individuals, 0.1 mM caffeine tended to reduce uptake to 0.83 ± 0.08. Insulin increased uptake by 3.86 ± 1.11 fold when tested alone at 100 nM, and by 3.21 ± 0.80 when combined with caffeine. Our results reinforce the recommendation of caffeine’s potential in the treatment or prevention of obesity complications.


Biochemistry ◽  
1977 ◽  
Vol 16 (6) ◽  
pp. 1151-1158 ◽  
Author(s):  
Visvanathan Chandramouli ◽  
Marianne Milligan ◽  
James R. Carter

1993 ◽  
Vol 268 (7) ◽  
pp. 5272-5278 ◽  
Author(s):  
G. Inoue ◽  
H. Kuzuya ◽  
T. Hayashi ◽  
M. Okamoto ◽  
Y. Yoshimasa ◽  
...  

1996 ◽  
Vol 270 (4) ◽  
pp. E614-E620 ◽  
Author(s):  
E. Svanberg ◽  
H. Zachrisson ◽  
C. Ohlsson ◽  
B. M. Iresjo ◽  
K. G. Lundholm

The aim was to evaluate the role of insulin and insulin-like growth factor I (IGF-I) in activation of muscle protein synthesis after oral feeding. Synthesis rate of globular and myofibrillar proteins in muscle tissue was quantified by a flooding dose of radioactive phenylalanine. Muscle tissue expression of IGF-I mRNA was measured. Normal (C57 Bl) and diabetic mice (type I and type II) were subjected to an overnight fast (18 h) with subsequent refeeding procedures for 3 h with either oral chow intake or provision of insulin, IGF-I, glucose, and amino acids. Anti-insulin and anti-IGF-I were provided intraperitoneally before oral refeeding in some experiments. An overnight fast reduced synthesis of both globular (38 +/- 3%) and myofibrillar proteins (54 +/- 3%) in skeletal muscles, which was reversed by oral refeeding. Muscle protein synthesis, after starvation/ refeeding, was proportional and similar to changes in skeletal muscle IGF-I mRNA expression. Diabetic mice responded quantitatively similarly to starvation/refeeding in muscle protein synthesis compared with normal mice (C57 Bl). Both anti-insulin and anti-IGF-I attenuated significantly the stimulation of muscle protein synthesis in response to oral feeding, whereas exogenous provision of either insulin or IGF-I to overnight-starved and freely fed mice did not clearly stimulate protein synthesis in skeletal muscles. Our results support the suggestion that insulin and IGF-I either induce or facilitate the protein synthesis machinery in skeletal muscles rather than exerting a true stimulation of the biosynthetic process during feeding.


Sign in / Sign up

Export Citation Format

Share Document