scholarly journals Remote Continuous Glucose Monitoring With a Computerized Insulin Infusion Protocol for Critically Ill Patients in a COVID-19 Medical ICU: Proof of Concept

Author(s):  
Georgia M. Davis ◽  
Eileen Faulds ◽  
Tara Walker ◽  
Debbie Vigliotti ◽  
Marina Rabinovich ◽  
...  

<b>Objective: </b>The use of remote real-time continuous glucose monitoring (CGM) in the hospital has rapidly emerged to preserve personal protective equipment (PPE) and reduce potential exposures during COVID-19. <p><b>Design and Methods:</b> We linked a hybrid CGM and point-of-care (POC) glucose testing protocol to a computerized decision support system for continuous insulin infusion (CII) and integrated a validation system for sensor glucose values into the electronic health record. We report our proof-of-concept experience in a COVID-19 ICU.<b></b></p> <p><b>Results: </b>All nine patients required mechanical ventilation and corticosteroids. Seventy six percent of sensor values were within 20% of the reference POC glucose with an associated average reduction in POC of 63%. Mean time in range (70-180 mg/dL) was 71.4 ± 13.9%. Sensor accuracy was impacted by mechanical interferences in four patients.</p> <p><b>Conclusions: </b>A hybrid protocol integrating real-time CGM and POC is helpful for managing critically ill patients with COVID-19 requiring insulin infusion. </p>

2021 ◽  
Author(s):  
Georgia M. Davis ◽  
Eileen Faulds ◽  
Tara Walker ◽  
Debbie Vigliotti ◽  
Marina Rabinovich ◽  
...  

<b>Objective: </b>The use of remote real-time continuous glucose monitoring (CGM) in the hospital has rapidly emerged to preserve personal protective equipment (PPE) and reduce potential exposures during COVID-19. <p><b>Design and Methods:</b> We linked a hybrid CGM and point-of-care (POC) glucose testing protocol to a computerized decision support system for continuous insulin infusion (CII) and integrated a validation system for sensor glucose values into the electronic health record. We report our proof-of-concept experience in a COVID-19 ICU.<b></b></p> <p><b>Results: </b>All nine patients required mechanical ventilation and corticosteroids. Seventy six percent of sensor values were within 20% of the reference POC glucose with an associated average reduction in POC of 63%. Mean time in range (70-180 mg/dL) was 71.4 ± 13.9%. Sensor accuracy was impacted by mechanical interferences in four patients.</p> <p><b>Conclusions: </b>A hybrid protocol integrating real-time CGM and POC is helpful for managing critically ill patients with COVID-19 requiring insulin infusion. </p>


2021 ◽  
Author(s):  
Georgia M. Davis ◽  
Eileen Faulds ◽  
Tara Walker ◽  
Debbie Vigliotti ◽  
Marina Rabinovich ◽  
...  

<b>Objective: </b>The use of remote real-time continuous glucose monitoring (CGM) in the hospital has rapidly emerged to preserve personal protective equipment (PPE) and reduce potential exposures during COVID-19. <p><b>Design and Methods:</b> We linked a hybrid CGM and point-of-care (POC) glucose testing protocol to a computerized decision support system for continuous insulin infusion (CII) and integrated a validation system for sensor glucose values into the electronic health record. We report our proof-of-concept experience in a COVID-19 ICU.<b></b></p> <p><b>Results: </b>All nine patients required mechanical ventilation and corticosteroids. Seventy six percent of sensor values were within 20% of the reference POC glucose with an associated average reduction in POC of 63%. Mean time in range (70-180 mg/dL) was 71.4 ± 13.9%. Sensor accuracy was impacted by mechanical interferences in four patients.</p> <p><b>Conclusions: </b>A hybrid protocol integrating real-time CGM and POC is helpful for managing critically ill patients with COVID-19 requiring insulin infusion. </p>


2020 ◽  
Vol 14 (6) ◽  
pp. 1065-1073
Author(s):  
Archana R. Sadhu ◽  
Ivan Alexander Serrano ◽  
Jiaqiong Xu ◽  
Tariq Nisar ◽  
Jessica Lucier ◽  
...  

Background: Amidst the coronavirus disease 2019 (COVID-19) pandemic, continuous glucose monitoring (CGM) has emerged as an alternative for inpatient point-of-care blood glucose (POC-BG) monitoring. We performed a feasibility pilot study using CGM in critically ill patients with COVID-19 in the intensive care unit (ICU). Methods: Single-center, retrospective study of glucose monitoring in critically ill patients with COVID-19 on insulin therapy using Medtronic Guardian Connect and Dexcom G6 CGM systems. Primary outcomes were feasibility and accuracy for trending POC-BG. Secondary outcomes included reliability and nurse acceptance. Sensor glucose (SG) was used for trends between POC-BG with nursing guidance to reduce POC-BG frequency from one to two hours to four hours when the SG was in the target range. Mean absolute relative difference (MARD), Clarke error grids analysis (EGA), and Bland-Altman (B&A) plots were calculated for accuracy of paired SG and POC-BG measurements. Results: CGM devices were placed on 11 patients: Medtronic ( n = 6) and Dexcom G6 ( n = 5). Both systems were feasible and reliable with good nurse acceptance. To determine accuracy, 437 paired SG and POC-BG readings were analyzed. For Medtronic, the MARD was 13.1% with 100% of readings in zones A and B on Clarke EGA. For Dexcom, MARD was 11.1% with 98% of readings in zones A and B. B&A plots had a mean bias of −17.76 mg/dL (Medtronic) and −1.94 mg/dL (Dexcom), with wide 95% limits of agreement. Conclusions: During the COVID-19 pandemic, CGM is feasible in critically ill patients and has acceptable accuracy to identify trends and guide intermittent blood glucose monitoring with insulin therapy.


Diabetes ◽  
2021 ◽  
Vol 70 (Supplement 1) ◽  
pp. 74-LB
Author(s):  
JOI HESTER ◽  
GEORGIA M. DAVIS ◽  
FRANCISCO J. PASQUEL ◽  
MARINA RABINOVICH ◽  
NORMA POINDEXTER ◽  
...  

Diabetes Care ◽  
2009 ◽  
Vol 33 (3) ◽  
pp. 467-472 ◽  
Author(s):  
U. Holzinger ◽  
J. Warszawska ◽  
R. Kitzberger ◽  
M. Wewalka ◽  
W. Miehsler ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document