interstitial glucose
Recently Published Documents


TOTAL DOCUMENTS

175
(FIVE YEARS 56)

H-INDEX

20
(FIVE YEARS 3)

Author(s):  
Caitlin E. Malik ◽  
David M. Wong ◽  
Katarzyna A. Dembek ◽  
Katherine E. Wilson

Abstract OBJECTIVE To determine the accuracy of 2 interstitial glucose-monitoring systems (GMSs) for use in horses compared with a point-of-care (POC) glucometer and standard laboratory enzymatic chemistry method (CHEM). ANIMALS 8 clinically normal adult horses. PROCEDURES One of each GMS device (Dexcom G6 and Freestyle Libre 14-day) was placed on each horse, and blood glucose concentration was measured via POC and CHEM at 33 time points and compared with simultaneous GMS readings. An oral glucose absorption test (OGAT) was performed on day 2, and glucose concentrations were measured and compared. RESULTS Glucose concentrations were significantly correlated with one another between all devices on days 1 to 5. Acceptable agreement was observed between Dexcom G6 and Freestyle Libre 14-day when compared with CHEM on days 1, 3, 4, and 5 with a combined mean bias of 10.45 mg/dL and 1.53 mg/dL, respectively. During dextrose-induced hyperglycemia on day 2, mean bias values for Dexcom G6 (10.49 mg/dL) and FreeStyle Libre 14-day (0.34 mg/dL) showed good agreement with CHEM. CLINICAL RELEVANCE Serial blood glucose measurements are used to diagnose or monitor a variety of conditions in equine medicine; advances in near-continuous interstitial glucose monitoring allow for minimally invasive glucose assessment, thereby reducing stress and discomfort to patients. Data from this study support the use of the Dexcom G6 and Freestyle Libre 14-day interstitial glucose-monitoring systems to estimate blood glucose concentrations in horses.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261506
Author(s):  
Arnon Gal ◽  
Williams Cuttance ◽  
Nick Cave ◽  
Nicolas Lopez-Villalobos ◽  
Aaron Herndon ◽  
...  

New Zealand farm working dogs are supreme athletes that are crucial to agriculture in the region. The effects that low or high dietary carbohydrate (CHO) content might have on their interstitial glucose (IG) and activity during work are unknown. The goals of the study were to determine if the concentration of IG and delta-g (a measurement of activity) will be lower in dogs fed an ultra-low CHO high fat diet in comparison to dogs fed a high CHO low fat diet, and to determine if low concentrations of IG are followed by reduced physical activity. We hypothesized that feeding working farm dogs an ultra-low CHO diet would reduce their IG concentrations which in turn would reduce physical activity during work. We prospectively recruited 22 farm dogs from four farms. At each farm, dogs were randomized to one of two diets and had a month of dietary acclimation to their allocated diet. The macronutrient proportions as a percentage of metabolizable energy (%ME) for the high CHO low fat diet (Diet 1) were 23% protein, 25% fat, and 52% CHO, and for the ultra-low CHO high fat diet (Diet 2) 37% protein, 63% fat, and 1% CHO. Following the acclimation period, we continuously monitored IG concentrations with flash glucose monitoring devices, and delta-g using triaxial accelerometers for 96 h. Dogs fed Diet 2 had a lower area under the curve (±SE) for IG (AUC Diet 2 = 497 ± 4 mmol/L/96h, AUC Diet 1 = 590 ± 3 mmol/L/96h; P = 0.002) but a higher area under the curve (±SE) for delta-g (AUC Diet 2 = 104,122 ± 6,045 delta-g/96h, AUC Diet 1 = 80,904 ± 4,950 delta-g/96h; P< 0.001). Interstitial glucose concentrations increased as the activity level increased (P < 0.001) and were lower for Diet 2 within each activity level (P < 0.001). The overall incidence of low IG readings (< 3.5 mmol/L) was 119/3810 (3.12%), of which 110 (92.4%) readings occurred in the Diet 2 group (P = 0.001). In the Diet 2 group, 99/110 (90%) of the low IG events occurred during the resting period (19:00–06:00). We conclude that feeding Diet 2 (ultra-low CHO high fat diet) to working farm dogs was associated with increased delta-g despite decreased IG concentrations. Interstitial glucose concentrations were positively associated with dogs’ activity levels independent of diet. Lastly, events of low IG occurred at a low incidence and were predominantly seen between 19:00–06:00 in dogs fed the ultra-low CHO high fat diet.


2021 ◽  
Vol 12 ◽  
Author(s):  
Emma J. Kinrade ◽  
Stuart D. R. Galloway

Carbohydrate (CHO) intake recommendations for events lasting longer than 3h indicate that athletes should ingest up to 90g.h.−1 of multiple transportable carbohydrates (MTC). We examined the dietary intake of amateur (males: n=11, females: n=7) ultra-endurance runners (mean age and mass 41.5±5.1years and 75.8±11.7kg) prior to, and during a 24-h ultra-endurance event. Heart rate and interstitial glucose concentration (indwelling sensor) were also tracked throughout the event. Pre-race diet (each 24 over 48h) was recorded via weighed intake and included the pre-race meal (1–4h pre-race). In-race diet (24h event) was recorded continuously, in-field, by the research team. Analysis revealed that runners did not meet the majority of CHO intake recommendations. CHO intake over 24–48h pre-race was lower than recommended (4.0±1.4g·kg−1; 42±9% of total energy), although pre-race meal CHO intake was within recommended levels (1.5±0.7g·kg−1). In-race CHO intake was only in the 30–60g·h−1 range (mean intake 33±12g·h−1) with suboptimal amounts of multiple transportable CHO consumed. Exercise intensity was low to moderate (mean 68%HRmax 45%VO2max) meaning that there would still be an absolute requirement for CHO to perform optimally in this ultra-event. Indeed, strong to moderate positive correlations were observed between distance covered and both CHO and energy intake in each of the three diet periods studied. Independent t-tests showed significantly different distances achieved by runners consuming ≥5 vs. &lt;5g·kg−1 CHO in pre-race diet [98.5±18.7miles (158.5±30.1km) vs. 78.0±13.5miles (125.5±21.7km), p=0.04] and ≥40 vs. &lt;40g·h−1 CHO in-race [92.2±13.9miles (148.4±22.4km) vs. 74.7±13.5miles (120.2±21.7km), p=0.02]. Pre-race CHO intake was positively associated with ultra-running experience, but no association was found between ultra-running experience and race distance. No association was observed between mean interstitial glucose and dietary intake, or with race distance. Further research should explore approaches to meeting pre-race dietary CHO intake as well as investigating strategies to boost in-race intake of multiple transportable CHO sources. In 24-h ultra-runners, studies examining the performance enhancing benefits of getting closer to meeting pre-race and in-race carbohydrate recommendations are required.


Nephron ◽  
2021 ◽  
pp. 1-7
Author(s):  
Tobias Bomholt ◽  
Bo Feldt-Rasmussen ◽  
Rizwan Butt ◽  
Rikke Borg ◽  
Mir Hassan Sarwary ◽  
...  

<b><i>Introduction:</i></b> Shortened erythrocyte life span and erythropoietin-stimulating agents may affect hemoglobin A<sub>1c</sub> (HbA<sub>1c</sub>) levels in patients receiving peritoneal dialysis (PD). We compared HbA<sub>1c</sub> with interstitial glucose measured by continuous glucose monitoring (CGM) in patients with type 2 diabetes receiving PD. <b><i>Methods:</i></b> Fourteen days of CGM (Ipro2, Medtronic) were performed in 23 patients with type 2 diabetes receiving PD and in 23 controls with type 2 diabetes and an estimated glomerular filtration rate over 60 mL/min/1.73 m<sup>2</sup>. Patients were matched on gender and age (±5 years). HbA<sub>1c</sub> (mmol/mol), its derived estimate of mean plasma glucose (eMPG<sub>A1c</sub>) (mmol/L), and fructosamine (µmol/L) were measured at the end of the CGM period and compared with the mean sensor glucose (mmol/L) from CGM. <b><i>Results:</i></b> In the PD group, mean sensor glucose was 0.98 (95% con­fidence interval (CI): 0.43–1.54) mmol/L higher than the eMPG<sub>A1c</sub> compared with the control group (<i>p</i> = 0.002) where glucose levels were nearly identical (−0.05 (95% CI: −0.35–0.25) mmol/L). A significant association was found between fructosamine and mean sensor glucose using linear regression with no difference between slopes (<i>p</i> = 0.89) or y-intercepts (<i>p</i> = 0.28). <b><i>Discussion/Conclusion:</i></b> HbA<sub>1c</sub> underestimates mean plasma glucose levels in patients with type 2 diabetes receiving PD. However, the clinical significance of this finding is undetermined. Fructosamine seems to more accurately reflect glycemic status. CGM or fructosamine could complement HbA<sub>1c</sub> to increase the accuracy of glycemic monitoring in the PD population.


Nutrients ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 3687
Author(s):  
Inger Nilsen ◽  
Agneta Andersson ◽  
Anna Laurenius ◽  
Johanna Osterberg ◽  
Magnus Sundbom ◽  
...  

This is an observational study of interstitial glucose (IG) concentrations, IG variability and dietary intake under free-living conditions in 46 females with obesity but without diabetes. We used continuous glucose monitoring, open-ended food recording and step monitoring during regular dietary intake followed by a low-energy diet (LED). Thirty-nine participants completed both study periods. The mean BMI at baseline was 43.6 ± 6.2 kg/m2. Three weeks of LED resulted in a mean weight loss of 5.2% with a significant reduction in diurnal IG concentration but with greater glycemic variability observed during LED. The mean 24 h IG concentration decreased from 5.8 ± 0.5 mmol/L during the regular diet period to 5.4 ± 0.5 mmol/L (p < 0.001) during LED, while the mean amplitude of glycemic excursion increased from 1.5 ± 0.7 to 1.7 ± 0.7 mmol/L (p = 0.031). The positive incremental area under the curve at breakfast was significantly larger for LED compared to regular diet. The daily fiber intake and the glycemic index of breakfast meals were significantly associated with the glycemic variability during regular dietary intake. In conclusion, the 24 h mean IG concentration was lower but with more pronounced glycemic variability during LED compared to a regular diet.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Yiqun Liu ◽  
Qi Yu ◽  
Xiaojin Luo ◽  
Li Yang ◽  
Yue Cui

AbstractDiabetes is a prevalent chronic metabolic disease with multiple clinical manifestations and complications, and it is among the leading causes of death. Painless and continuous monitoring of interstitial glucose is highly desirable for diabetes management. Here we unprecedentedly show continuous monitoring of diabetes with an integrated microneedle biosensing device. The device was manufactured with a 3D printing process, a microfabrication process, an electroplating process, and an enzyme immobilization step. The device was inserted into the dermis layer of mouse skin and showed accurate sensing performance for monitoring subcutaneous glucose levels in normal or diabetic mice. The detection results were highly correlated with those obtained from a commercial blood glucose meter. We anticipate that the study could open exciting avenues for monitoring and managing diabetes, alongside fundamental studies of subcutaneous electronic devices.


2021 ◽  
Vol 9 ◽  
Author(s):  
Irina Kareva ◽  
Joel S. Brown

Diagnosis of estrogen sensitivity in breast cancer is largely predicated on the ratio of ER+ and ER– cancer cells obtained from biopsies. Estrogen is a growth factor necessary for cell survival and division. It can also be thought of as an essential resource that can act in association with other nutrients, glucose, glutamine, fatty acids, amino acids, etc. All of these nutrients, collectively or individually, may limit the growth of the cancer cells (Liebig’s Law of the Minimum). Here we model estrogen susceptibility in breast cancer as a consumer-resource interaction: ER+ cells require both estrogen and glucose as essential resources, whereas ER– only require the general resource. The model predicts that when estrogen is the limiting factor, other nutrients may go unconsumed and available at higher levels, thus permitting the invasion of ER– cells. Conversely, when ER– cells are less efficient on glucose than ER+ cells, then ER– cells limited by glucose may be susceptible to invasion by ER+ cells, provided that sufficient levels of estrogen are available. ER+ cells will outcompete ER– cells when estrogen is abundant, resulting in low concentrations of interstitial glucose within the tumor. In the absence of estrogen, ER– cells will outcompete ER+ cells, leaving a higher concentration of interstitial glucose. At intermediate delivery rates of estrogen and glucose, ER+ and ER– cells are predicted to coexist. In modeling the dynamics of cells in the same tumor with different resource requirements, we can apply concepts and terms familiar to many ecologists. These include: resource supply points, R∗, ZNGI (zero net growth isoclines), resource depletion, and resource uptake rates. Based on the circumstances favoring ER+ vs. ER– breast cancer, we use the model to explore the consequences of therapeutic regimens that may include hormonal therapies, possible roles of diet in changing cancer cell composition, and potential for evolutionarily informed therapies. More generally, the model invites the viewpoint that cancer’s eco-evolutionary dynamics are a consumer-resource interaction, and that other growth factors such as EGFR or androgens may be best viewed as essential resources within these dynamics.


2021 ◽  
pp. 1753495X2110327
Author(s):  
Adam Morton

Hypoglycaemia in non-diabetic pregnancy is rare, the majority of reported cases being due to insulinoma, acute fatty liver of pregnancy, malaria and inborn errors of metabolism. A case of hypoglycaemia in a woman with previous laparoscopic sleeve gastrectomy, and hypothalamic-pituitary-adrenal axis insufficiency in the setting of opioid dependence is presented. The timing of low interstitial glucose levels was atypical for late dumping syndrome following bariatric surgery, and a change in the woman’s glucocorticoid replacement resulted in resolution of hypoglycaemic symptoms. The incidence of opioid dependence in pregnancy is increasing rapidly. Health professionals should be aware of the possibility of opioids causing hypothalamic-pituitary-adrenal axis insufficiency, and the additional mechanisms by which opioids may cause hypoglycaemia.


Sign in / Sign up

Export Citation Format

Share Document