scholarly journals Analysis of Structure-Property Relationship for an Anthelmintic Drug, Mebendazole Nitrate Salt, using Density Functional Theory Approach

Author(s):  
Akansha TYAGİ ◽  
Anuj KUMAR
2019 ◽  
Vol 45 ◽  
pp. 146867831986447
Author(s):  
Bilal Achouri ◽  
Yamina Belmiloud ◽  
Meziane Brahimi

In this work, we focus our attention on chemical reactions confined within carbon nanotubes. As a result of the confinement within carbon nanotubes, novel physical and chemical properties are found for the confined materials. We consider the feasibility of proton transfer inside carbon nanotubes. To do that, we have chosen formamide as the simplest real model for exhibiting the tautomerization in DNA. We have used the quantitative structure–property relationship method, based on geometry optimization and quantum chemical structural descriptors, to illustrate the potential of using the confined space inside carbon nanotubes, which will provide comprehensive information about carbon nanotubes. All calculations have been carried out using density functional theory quantum calculations with the B3LYP functional. The geometries optimized by the Gaussian program were transferred to the computer software DRAGON to calculate pertinent descriptors that could be used in the quantitative structure–property relationship model.


2021 ◽  
Vol 11 ◽  
Author(s):  
Tigori Mougo André ◽  
Beda Reginald Henriette Blanche ◽  
Niamien Paulin Marius ◽  
Diabaté Donourou

Aims : The aim of this study is to show the anticorrosive properties of 1,3-dimethyl-7H-purine-2,6-dione on aluminium corrosion in 1M hydrochloric acid and to study the synergy effect between iodide ions and this molecule. Background: Research of eco-friendly, low toxic and biodegradable corrosion inhibitors capable of protecting metals in order to support industrialists who spend large sums of money to replace their corroded equipment. Objective: The main objective is to study the anticorrosive properties of theophylline on aluminium corrosion in 1M HCl. Methods: The anticorrosive properties study of theophylline on aluminium corrosion in 1M HCl was evaluated using mass loss, Density Functional Theory at B3LYP/6-31G (d) and Quantitative Structure-Property Relationship methods. Results: The results obtained show that theophylline inhibition efficiency increases with concentration but decreases with increasing temperature with a maximum value of 88% for 5.10-3M at T = 298 K. The result from absorption isotherms reveals that theophylline adsorbs to the aluminium surface according to the modified Langmuir isotherm. Adejo Ekwenshi's isotherm has shown that the molecule adsorption on aluminium is essentially of a physical nature. Thermodynamic adsorption and activation parameters were calculated and analyzed. A synergistic effect between the molecule studied and the iodide ions was found. Furthermore, global and local reactivity were analyzed through density functional theory calculations. Quantitative structure-property relationship methods model has been permitted to correlate experimental and theoretical inhibition efficiencies. Conclusion: Theophylline is an excellent aluminum inhibitor corrosion in the studied solution. Theoretical results were in agreement with experimental data. Other: Finally to find the best set of parameters for modeling the inhibition efficiency.


2016 ◽  
Vol 94 (9) ◽  
pp. 794-801
Author(s):  
Kai-Li Zhu ◽  
Le-yan Liu ◽  
Zhi-Yuan Geng

Two series of dyes have been designed and theoretically characterized through density functional theory and time-dependent density functional theory to systematically explore the structure–property relationship of dyes with D–A–π–A architecture and the performance of dye-sensitized solar cells, particularly the influence of the π-bridge, including its alkyl side chain, adding additional conjugate spacer, displacement, and separation of π-bridge. Key parameters associated with the short-circuit current density Jsc and open-circuit photovoltage Voc were characterized and analyzed in detail. All of the analysis results manifest that dye H1 should be the best candidate to fabricate dye-sensitized solar cells owing to the best optical absorption property (a broad absorption band from 300 to 900 nm for adsorbed dye) and other outstanding parameters.


2012 ◽  
Vol 65 (2) ◽  
pp. 169 ◽  
Author(s):  
Yanling Wang ◽  
Qiang Peng ◽  
Ping He ◽  
Zaifang Li ◽  
Ying Liang ◽  
...  

The electronic structures, charge injection and transport, and absorption and emission properties of four series of dimethylpyrido[3,4-b]pyrazine-based oligomers (5-(5,5-dimethyl-5H-dibenzo[b,d]silol-3-yl)-2,3-dimethylpyrido[3,4-b]pyrazine)n (SPP)n, (5-(dibenzo[b,d]thiophen-3-yl)-2,3-dimethylpyrido[3,4-b]pyrazine)n (TPP)n, (5-(9,9-dimethyl-9H-fluoren-2-yl)-2,3-dimethylpyrido[3,4-b]pyrazine)n (FPP)n, (2-(2,3-dimethylpyrido[3,4-b]pyrazin-5-yl)-9-methyl-9H-carbazole)n (PPC)n were investigated by the density functional theory approach. The ground-state geometries of (SPP)n, (TPP)n, (FPP)n and (PPC)n (n = 1–4) were optimized at the B3LYP/6–31G(d) level. The energies of the HOMO, LUMO and HOMO–LUMO energy gaps of (SPP)n, (TPP)n, (FPP)n and (PPC)n (n = 1–4) were obtained by a linear extrapolation method. Further, calculations of ionization potential, electronic affinity and reorganization energy were used to evaluate charge injection and transport abilities. For (SPP)n, (TPP)n, (FPP)n and (PPC)n (n = 1–4), the time-dependent density functional theory (TDDFT) calculation results revealed that the absorption peaks can be characterized as π–π* transitions and are coupled with the location of electron density distribution change in different repeat units. All the primary theoretical investigations are intended to establish structure–property relationships, which can provide guidance in designing and preparing novel efficient organic light-emitting materials with a high performance.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Abdur Rauf ◽  
Muhammad Adil ◽  
Shabeer Ahmad Mian ◽  
Gul Rahman ◽  
Ejaz Ahmed ◽  
...  

AbstractHematite (Fe2O3) is one of the best candidates for photoelectrochemical water splitting due to its abundance and suitable bandgap. However, its efficiency is mostly impeded due to the intrinsically low conductivity and poor light absorption. In this study, we targeted this intrinsic behavior to investigate the thermodynamic stability, photoconductivity and optical properties of rhodium doped hematite using density functional theory. The calculated formation energy of pristine and rhodium doped hematite was − 4.47 eV and − 5.34 eV respectively, suggesting that the doped material is thermodynamically more stable. The DFT results established that the bandgap of doped hematite narrowed down to the lower edge (1.61 eV) in the visible region which enhanced the optical absorption and photoconductivity of the material. Moreover, doped hematite has the ability to absorb a broad spectrum (250–800) nm. The enhanced optical absorption boosted the photocurrent and incident photon to current efficiency. The calculated results also showed that the incorporation of rhodium in hematite induced a redshift in optical properties.


Sign in / Sign up

Export Citation Format

Share Document