Finite Element Evaluation of the State of Cure in a Tire

1991 ◽  
Vol 19 (4) ◽  
pp. 178-212 ◽  
Author(s):  
W. J. Toth ◽  
J. P. Chang ◽  
C. Zanichelli

Abstract Curing is one of the most important steps in the tire manufacturing process. During this process, a green tire is formed to the desired shape and the compound is converted to a strong, elastic material to meet tire performance needs. The process of curing, commonly called vulcanization, is usually accomplished under pressure and an elevated temperature provided by the mold. The curing process is energy-consuming and has a strong effect on material properties. To attain an optimal state of cure for different compounds of various dimensions at minimal capital and energy costs requires proper evaluation of the state of cure in a tire. Various numerical models have been proposed to determine the state of cure of rubber compounds in molds. Their applications are limited to simple geometry and boundary conditions. For a tire, which has complex shape and variable boundary conditions, the finite element method appears to be an ideal candidate because of its versatility. In this paper, a commercial finite element code, ABAQUS, is used to determine the temperature history of a tire in the curing press. In order to evaluate the state of cure throughout a tire, a user subroutine, HETVAL, is implemented. In the subroutine, the state of cure is determined based on the temperature history using a selected kinetic model, whose cure rate parameters are obtained from moving die rheometer (MDR) measurements. The heat generation due to chemical reaction is also included. The evaluation of the state of cure using the finite element method is benchmarked using a number of rubber compounds with simple geometries and boundary conditions. Both isothermal and nonisothermal conditions are tested. The predicted temperature history of a tire is then verified by the temperature history obtained from the thermocouples embedded in the tire. Parametric studies are carried out to evaluate the effect of various temperature histories on the state of cure in a tire. The results are used to shorten the curing cycle.

Author(s):  
Виктор Григорьевич Чеверев ◽  
Евгений Викторович Сафронов ◽  
Алексей Александрович Коротков ◽  
Александр Сергеевич Чернятин

Существуют два основных подхода решения задачи тепломассопереноса при численном моделировании промерзания грунтов: 1) решение методом конечных разностей с учетом граничных условий (границей, например, является фронт промерзания); 2) решение методом конечных элементов без учета границ модели. Оба подхода имеют существенные недостатки, что оставляет проблему решения задачи для численной модели промерзания грунтов острой и актуальной. В данной работе представлена физическая постановка промерзания, которая позволяет создать численную модель, базирующуюся на решении методом конечных элементов, но при этом отражающую ход фронта промерзания - то есть модель, в которой объединены оба подхода к решению задачи промерзания грунтов. Для подтверждения корректности модели был проделан ряд экспериментов по физическому моделированию промерзания модельного грунта и выполнен сравнительный анализ полученных экспериментальных данных и результатов расчетов на базе представленной численной модели с такими же граничными условиями, как в экспериментах. There are two basic approaches to solving the problem of heat and mass transfer in the numerical modeling of soil freezing: 1) using the finite difference method taking into account boundary conditions (the boundary, for example, is the freezing front); 2) using the finite element method without consideration of model boundaries. Both approaches have significant drawbacks, which leaves the issue of solving the problem for the numerical model of soil freezing acute and up-to-date. This article provides the physical setting of freezing that allows us to create a numerical model based on the solution by the finite element method, but at the same time reflecting the route of the freezing front, i.e. the model that combines both approaches to solving the problem of soil freezing. In order to confirm the correctness of the model, a number of experiments on physical modeling of model soil freezing have been performed, and a comparative analysis of the experimental data obtained and the calculation results based on the provided numerical model with the same boundary conditions as in the experiments was performed.


1999 ◽  
Vol 21 (2) ◽  
pp. 116-128
Author(s):  
Pham Thi Toan

In the present paper, the goffered multilayered composite cylindrical shells is directly calculated by finite element method. Numerical results on displacements, internal forces and moments are obtained for various kinds of external loads and different boundary conditions.


2013 ◽  
Vol 26 ◽  
pp. 143-151 ◽  
Author(s):  
Sadegh Imani Yengejeh ◽  
Mojtaba Akbarzade ◽  
Andreas Öchsner

In this study, numerous types of straight hetero-junction carbon nanotubes (CNTs) and their fundamental CNTs were investigated by the finite element method (FEM). By applying the FEM, the shear behavior of these hetero-junctions was obtained thorough numerical simulation. The behavior of hetero-junctions and their constituent CNTs were investigated. The investigations revealed that the twisting angle of straight hetero-junction CNTs lies within the range of twisting angle of their fundamental CNTs. In addition, change of boundary conditions did not significantly change the value of obtained twisting angle of hetero-junctions. It was also concluded that the shear behavior of straight hetero-junctions and their constituent CNTs increases by increasing the chiral number of both armchair and zigzag CNTs. The current study provides a better insight towards the prediction of straight hetero-junction CNTs behavior.


2018 ◽  
Vol 9 (1) ◽  
pp. 171-174
Author(s):  
Richárd Molnár ◽  
Gergely Dezső

Abstract Nowadays more and more ultralight aircraft are being built because the building process itself and the acquisition of the necessary documentation is relatively easy. Furthermore, these planes are easier to fly than larger types of aircraft. This article presents the engineering work and documentation that is necessary for the building process. The calculations can be done traditionally on paper which is an extremely complex task. With the innovations and developments in the technical field though, it is possible now to simplify these calculations, the basis of which is the finite element method and aerodynamics simulations. If the finite element method is adequate, the boundary conditions are ideal and input-output settings for the simulations are correct, it is possible to compare the traditional calculations to the modern simulated engineering work, thus the time necessary for achieving precise results becomes significantly shorter.


Sign in / Sign up

Export Citation Format

Share Document