Modelling the effects of laser beam geometry on laser surface heating of metallic materials

Author(s):  
Shakeel Safdar ◽  
Lin Li ◽  
M. A. Sheikh ◽  
M. J. Schmidt
Author(s):  
Sullivan Smith ◽  
Jon Blackburn ◽  
Michael Gittos ◽  
Paola de Bono ◽  
Paul Hilton

2014 ◽  
Vol 802 ◽  
pp. 409-414 ◽  
Author(s):  
Viviane Teleginski ◽  
Daniele C. Chagas ◽  
Luis Gustavo de Oliveira ◽  
Getúlio de Vasconcelos

As aircraft and thermoelectric turbine blades work in aggressive environments (high temperatures and pressures), they are exposed to oxidation reactions. Ceramic coatings are employed to increase the turbine work temperature (improving its performance) and a bond coat (BC), base of particulate material of Ni-Cr-Al powders, which assure a good adhesion, gradual decrease in thermal expansion coefficient between the metallic substrate and the ceramic top coat, avoiding the oxidation effect in the metallic substrate. This research aims the study and comparison of two different deposition process routes of particulate materials of BC (MCrAlY) on AISI 316 stainless steel substrate. In the first case, the BC powder was pre-deposited by segregation method and irradiated by a CO2laser beam. In the second case, laser surface texturing was done on the stainless steel surface by a Yb: fiber laser beam, the BC was deposited by the same method, and further, irradiated by a CO2laser beam. The main focus of this work was to evaluate the resulting interface for both mentioned cases. For this propose, characterizations were made using the techniques of optical microscopy and roughness measurements. In the first case, homogenous layers of bond coat were obtained. Optical microscopy suggest the formation of a metallurgic bonding between the substrate and the MCrAlY. For the laser surface texturing, the surface roughness can be adjusted by the laser beam parameters.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Peter Šugár ◽  
Jana Šugárová ◽  
Martin Frnčík

Abstract In this experimental investigation the laser surface texturing of tool steel of type 90MnCrV8 has been conducted. The 5-axis highly dynamic laser precision machining centre Lasertec 80 Shape equipped with the nano-second pulsed ytterbium fibre laser and CNC system Siemens 840 D was used. The planar and spherical surfaces first prepared by turning have been textured. The regular array of spherical and ellipsoidal dimples with a different dimensions and different surface density has been created. Laser surface texturing has been realized under different combinations of process parameters: pulse frequency, pulse energy and laser beam scanning speed. The morphological characterization of ablated surfaces has been performed using scanning electron microscopy (SEM) technique. The results show limited possibility of ns pulse fibre laser application to generate different surface structures for tribological modification of metallic materials. These structures were obtained by varying the processing conditions between surface ablation, to surface remelting. In all cases the areas of molten material and re-cast layers were observed on the bottom and walls of the dimples. Beside the influence of laser beam parameters on the machined surface quality during laser machining of regular hemispherical and elipsoidal dimple texture on parabolic and hemispherical surfaces has been studied.


Sign in / Sign up

Export Citation Format

Share Document