surface heating
Recently Published Documents


TOTAL DOCUMENTS

460
(FIVE YEARS 61)

H-INDEX

30
(FIVE YEARS 5)

Membranes ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 866
Author(s):  
Fei Han ◽  
Shuxun Liu ◽  
Kang Wang ◽  
Xiaoyuan Zhang

Membrane distillation (MD) is a thermally driven desalination process that has excellent application prospects in seawater desalination or hypersaline wastewater treatment, while severe temperature polarization (TP) and the resulting relatively high energy consumption have become principal challenges limiting the commercial application of MD. Therefore, the design of novel systems to overcome the shortage of conventional MD requires urgent attention. Here, we developed three surface heating vacuum membrane distillation systems, namely, SHVMD-1, SHVMD-2, and SHVMD-3, according to the different positions of the thermal conducting layer in the cell. The distillate flux, TP, and energy performance of these systems under different operating conditions were investigated. All three systems showed stable performance, with a salt rejection >99.98% for 35 g/L NaCl, and the highest flux was close to 9 L/m2·h. The temperature polarization coefficients were higher than unity in SHVMD-2 and SHVMD-3 systems, and the SHVMD-2 system produced the lowest specific energy consumption and the highest thermal efficiency. In addition, we tested the intermittent surface heating process, which can further improve energy performance through reducing specific electrical energy consumption in vacuum membrane distillation. This paper provides a simple and efficient membrane system for the desalination of brines.


Author(s):  
Arata Sawafuji ◽  
Hirofumi Hidai ◽  
Souta Matsusaka ◽  
Akira Chiba ◽  
Noboru Morita

Author(s):  
Yu Liang ◽  
Alexey V. Fedorov ◽  
Vladimir Zeitlin ◽  
Patrick Haertel

AbstractWe study the adjustment of the tropical atmosphere to localized surface heating using a Lagrangian atmospheric model (LAM) that simulates a realistic Madden-Julian Oscillation (MJO) – the dominant, eastward-propagating mode of tropical intraseasonal variability modulating atmospheric convection. Idealized warm sea surface temperature (SST) anomalies of different aspect ratios and magnitudes are imposed in the equatorial Indian Ocean during MJO-neutral conditions and then maintained for 15 days. Throughout these experiments, we observe a robust generation of an MJO event, evident in precipitation, velocity, temperature and moisture fields, which becomes a key element of atmospheric adjustment along with the expected Kelvin and Rossby waves. The MJO circulation pattern gradually builds up during the first week, and then starts to propagate eastward at a speed of 5-7m/s. The upper-level quadrupole circulation characteristic of the MJO becomes evident around day 14, with two anticyclonic gyres generated by the Gill-type response to convective heating and two cyclonic gyres forced by the excited Kelvin waves and extratropical Rossby wave trains. A moisture budget analysis shows that the eastward propagation of the MJO is controlled largely by the anomalous advection of moisture and by the residual between anomalous moisture accumulation due to converging winds and precipitation. The initial MJO event is followed by successive secondary events, maintaining the MJO for several more cycles. Thus, this study highlights the fundamental role that the MJO can play in the adjustment of the moist equatorial atmosphere to localized surface heating.


Author(s):  
Robert M. Banta ◽  
Yelena L. Pichugina ◽  
Lisa S. Darby ◽  
W. Alan Brewer ◽  
Joseph B. Olson ◽  
...  

AbstractComplex-terrain locations often have repeatable near-surface wind patterns, such as synoptic gap flows and local thermally forced flows. An example is the Columbia River Valley in east-central Oregon-Washington, a significant wind-energy-generation region and the site of the Second Wind-Forecast Improvement Project (WFIP2). Data from three Doppler lidars deployed during WFIP2 define and characterize summertime wind regimes and their large-scale contexts, and provide insight into NWP model errors by examining differences in the ability of a model [NOAA’s High-Resolution Rapid-Refresh (HRRR-version1)] to forecast wind-speed profiles for different regimes. Seven regimes were identified based on daily time series of the lidar-measured rotor-layer winds, which then suggested two broad categories. First, in three regimes the primary dynamic forcing was the large-scale pressure gradient. Second, in two regimes the dominant forcing was the diurnal heating-cooling cycle (regional sea-breeze-type dynamics), including the marine intrusion previously described, which generates strong nocturnal winds over the region. The other two included a hybrid regime and a non-conforming regime. For the large-scale pressure-gradient regimes, HRRR had wind-speed biases of ~1 m s−1 and RMSEs of 2-3 m s−1. Errors were much larger for the thermally forced regimes, owing to the premature demise of the strong nocturnal flow in HRRR. Thus, the more dominant the role of surface heating in generating the flow, the larger the errors. Major errors could result from surface heating of the atmosphere, boundary-layer responses to that heating, and associated terrain interactions. Measurement/modeling research programs should be aimed at determining which modeled processes produce the largest errors, so those processes can be improved and errors reduced.


2021 ◽  
Vol 18 (181) ◽  
pp. 20210252
Author(s):  
Svana Rogalla ◽  
Anvay Patil ◽  
Ali Dhinojwala ◽  
Matthew D. Shawkey ◽  
Liliana D'Alba

The diverse colours of bird feathers are produced by both pigments and nanostructures, and can have substantial thermal consequences. This is because reflectance, transmittance and absorption of differently coloured tissues affect the heat loads acquired from solar radiation. Using reflectance measurements and heating experiments on sunbird museum specimens, we tested the hypothesis that colour and their colour producing mechanisms affect feather surface heating and the heat transferred to skin level. As predicted, we found that surface temperatures were strongly correlated with plumage reflectivity when exposed to a radiative heat source and, likewise, temperatures reached at skin level decreased with increasing reflectivity. Indeed, nanostructured melanin-based iridescent feathers (green, purple, blue) reflected less light and heated more than unstructured melanin-based colours (grey, brown, black), as well as olives, carotenoid-based colours (yellow, orange, red) and non-pigmented whites. We used optical and heat modelling to test if differences in nanostructuring of melanin, or the bulk melanin content itself, better explains the differences between melanin-based feathers. These models showed that the greater melanin content and, to a lesser extent, the shape of the melanosomes explain the greater photothermal absorption in iridescent feathers. Our results suggest that iridescence can increase heat loads, and potentially alter birds' thermal balance.


2021 ◽  
Vol 1954 (1) ◽  
pp. 012004
Author(s):  
B Brzhozovsky ◽  
V Martynov ◽  
E Zinina ◽  
S Permyakov

Sign in / Sign up

Export Citation Format

Share Document