scholarly journals Effects of CXCR4 Gene Transfer on Cardiac Function After Ischemia-Reperfusion Injury

2010 ◽  
Vol 176 (4) ◽  
pp. 1705-1715 ◽  
Author(s):  
Jiqiu Chen ◽  
Elie Chemaly ◽  
Lifan Liang ◽  
Changwon Kho ◽  
Ahyoung Lee ◽  
...  
2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Joshua G Travers ◽  
Fadia A Kamal ◽  
Michelle L Nieman ◽  
Michelle A Sargent ◽  
Jeffery D Molkentin ◽  
...  

Heart failure is a devastating disease characterized by chamber remodeling, interstitial fibrosis and reduced ventricular compliance. Cardiac fibroblasts are responsible for extracellular matrix homeostasis, however upon injury or pathologic stimulation, these cells transform to a myofibroblast phenotype and play a fundamental role in myocardial fibrosis and remodeling. Chronic sympathetic overstimulation induces excess signaling through G protein βγ subunits and ultimately the pathologic activation of G protein-coupled receptor kinase 2 (GRK2). We hypothesized that Gβγ-GRK2 inhibition plays an important role in the cardiac fibroblast to attenuate pathologic myofibroblast activation and cardiac remodeling. To investigate this hypothesis, mice were subjected to ischemia/reperfusion (I/R) injury and treated with the small molecule Gβγ-GRK2 inhibitor gallein. While animals receiving vehicle demonstrated a reduction in overall cardiac function as measured by echocardiography, mice treated with gallein exhibited nearly complete preservation of cardiac function and reduced fibrotic scar formation. We next sought to establish the cell specificity of this compound by treating inducible cardiomyocyte- and activated fibroblast-specific GRK2 knockout mice post-I/R. Although we observed modest restoration in cardiac function in cardiomyocyte-specific GRK2 null mice, treatment of these mice with gallein resulted in further protection against myocardial dysfunction following injury, suggesting a functional role in other cardiac cell types, including fibroblasts. Activated fibroblast-specific GRK2 knockout mice were also subjected to ischemia/reperfusion injury; these animals displayed preserved myocardial function and reduced collagen deposition compared to littermate controls following injury. Furthermore, systemic Gβγ-GRK2 inhibition by gallein did not appear to confer further protection over activated fibroblast-specific GRK2 ablation alone. In summary, these findings suggest a potential therapeutic role for Gβγ-GRK2 inhibition in limiting pathologic myofibroblast activation, interstitial fibrosis and heart failure progression.


2012 ◽  
Vol 32 (8) ◽  
pp. 1865-1874 ◽  
Author(s):  
Shashi Bhushan ◽  
Kazuhisa Kondo ◽  
Benjamin L. Predmore ◽  
Maxim Zlatopolsky ◽  
Adrienne L. King ◽  
...  

2021 ◽  
Vol 9 (6) ◽  
Author(s):  
Briana K. Shimada ◽  
Naaiko Yorichika ◽  
Jason K. Higa ◽  
Yuichi Baba ◽  
Motoi Kobayashi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document