WITHDRAWN: Quantification of Mitochondrial DNA with the A1555G Mutation in Deaf Patients Using Real-Time Amplification Refractory Mutation System-Quantitative PCR

Author(s):  
Zu-jian Cheng ◽  
Bin Yang ◽  
Qi-cai Liu ◽  
Lin Jiang ◽  
Jing Chen ◽  
...  
2004 ◽  
Vol 50 (6) ◽  
pp. 996-1001 ◽  
Author(s):  
Ren-Kui Bai ◽  
Lee-Jun C Wong

Abstract Background: The A3243G mitochondrial tRNA leu(UUR) point mutation causes mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome, the most common mitochondrial DNA (mtDNA) disorder, and is also found in patients with maternally inherited diabetes and deafness syndrome (MIDD). To correlate disease manifestation with mutation loads, it is necessary to measure the percentage of the A3243G mtDNA mutation. Methods: To reliably quantify low proportions of the mutant mtDNA, we developed a real-time amplification refractory mutation system quantitative PCR (ARMS-qPCR) assay. We validated the method with experimental samples containing known proportions of mutant A3243G mtDNA generated by mixing known amounts of cloned plasmid DNA containing either the wild-type or the mutant sequences. Results: A correlation coefficient of 0.9995 between the expected and observed values for the proportions of mutant A3243G in the experimental samples was found. Evaluation of a total of 36 patient DNA samples demonstrated consistent results between PCR–restriction fragment length polymorphism (RFLP) analysis and real-time ARMS-qPCR. However, the latter method was much more sensitive for detecting low percentages of mutant heteroplasmy. Three samples contained allele-specific oligonucleotide-detectable but RFLP-undetectable mutations. Conclusions: The real-time ARMS-qPCR method provides rapid, reliable, one-step quantitative detection of heteroplasmic mutant mtDNA.


2001 ◽  
Vol 47 (4) ◽  
pp. 667-672 ◽  
Author(s):  
Rossa W K Chiu ◽  
Michael F Murphy ◽  
Carrie Fidler ◽  
Benny C Y Zee ◽  
James S Wainscoat ◽  
...  

Abstract Background: Rh isoimmunization and hemolytic disease of the newborn still occur despite the availability of Rh immunoglobulin. For the prenatal investigation of sensitized RhD-negative pregnant women, determination of the zygosity of the RhD-positive father has important implications. The currently available molecular methods for RhD zygosity assessment, in general, are technically demanding and labor-intensive. Therefore, at present, rhesus genotype assessment is most commonly inferred from results of serological tests. The recent elucidation of the genetic structure of the prevalent RHD deletion in Caucasians, as well as the development of real-time PCR, allowed us to explore two new approaches for the molecular determination of RhD zygosity. Methods: Two methods for RhD zygosity determination were developed. The first was based on the double Amplification Refractory Mutation System (double ARMS). The second was based on multiplex real-time quantitative PCR. For the double ARMS assay, allele-specific primers were designed to directly amplify the most prevalent RHD deletion found in RhD-negative individuals in the Caucasian population. The multiplex real-time quantitative PCR assay, on the other hand, involved coamplification and quantification of RHD-specific sequences in relation to a reference gene, albumin, in a single PCR reaction. A ratio, ΔCt, based on the threshold cycle, was then determined and reflects the RHD gene dosage. Results: The allele-specific primers of the double ARMS assay reliably amplified the RHD-deleted allele and therefore accurately distinguished homozygous from heterozygous RhD-positive samples. The results were in complete concordance with serological testing. For the multiplex real-time quantitative PCR assay, the ΔCt values clearly segregated into two distinct populations according to the RHD gene dosage, with mean values of 1.70 (SD, 0.17) and 2.62 (SD, 0.29) for the homozygous and heterozygous samples, respectively (P <0.001, t-test). The results were in complete concordance with the results of serological testing as well as with the double ARMS assay. Conclusion: Double ARMS and real-time quantitative PCR are alternative robust assays for the determination of RhD zygosity.


2012 ◽  
Vol 10 (3) ◽  
pp. 329-334 ◽  
Author(s):  
D.M. Valero-Hervás ◽  
P. Morales ◽  
M.J. Castro ◽  
P. Varela ◽  
M. Castillo-Rama ◽  
...  

“Slow” and “Fast” C3 complement variants (C3S and C3F) result from a g.304C>G polymorphism that changes arginine to glycine at position 102. C3 variants are associated with complement-mediated diseases and outcome in transplantation. In this work C3 genotyping is achieved by a Real Time PCR - High Resolution Melting (RT-PCR-HRM) optimized method. In an analysis of 49 subjects, 10.2% were C3FF, 36.7% were C3SF and 53.1% were C3SS. Allelic frequencies (70% for C3S and 30% for C3F) were in Hardy-Weinberg equilibrium and similar to those published previously. When comparing RT-PCR-HRM with the currently used Tetraprimer-Amplification Refractory Mutation System PCR (T-ARMS-PCR), coincidence was 93.8%. The procedure shown here includes a single primer pair and low DNA amount per reaction. Detection of C3 variants by RT-PCR-HRM is accurate, easy, fast and low cost, and it may be the method of choice for C3 genotyping.


Sign in / Sign up

Export Citation Format

Share Document